Brainchip / Image Classification - Deck of Cards - BrainChip Akida - Edge Learning Public

Training settings

Please provide a valid number of training cycles (numeric only)
Please provide a valid number for the learning rate (between 0 and 1)
Please provide a valid training processor option

Augmentation settings

Advanced training settings

Neural network architecture

import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, InputLayer, Dropout, Conv1D, Conv2D, Flatten, Reshape, MaxPooling1D, MaxPooling2D, AveragePooling2D, BatchNormalization, Permute, ReLU, Softmax from tensorflow.keras.optimizers.legacy import Adam EPOCHS = args.epochs or 10 LEARNING_RATE = args.learning_rate or 0.0005 # If True, non-deterministic functions (e.g. shuffling batches) are not used. # This is False by default. ENSURE_DETERMINISM = args.ensure_determinism # this controls the batch size, or you can manipulate the tf.data.Dataset objects yourself BATCH_SIZE = args.batch_size or 32 if not ENSURE_DETERMINISM: train_dataset = train_dataset.shuffle(buffer_size=BATCH_SIZE*4) train_dataset=train_dataset.batch(BATCH_SIZE, drop_remainder=False) validation_dataset = validation_dataset.batch(BATCH_SIZE, drop_remainder=False) # model architecture model = Sequential() model.add(Conv2D(32, kernel_size=3, strides=2, kernel_constraint=tf.keras.constraints.MaxNorm(1), padding='same')) model.add(ReLU()) model.add(Conv2D(16, kernel_size=3, strides=2, kernel_constraint=tf.keras.constraints.MaxNorm(1), padding='same')) model.add(ReLU()) model.add(Flatten()) model.add(Dropout(0.25)) model.add(Dense(classes, name='y_pred')) model.add(Softmax()) # this controls the learning rate opt = Adam(learning_rate=LEARNING_RATE, beta_1=0.9, beta_2=0.999) callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count, epochs=EPOCHS, ensure_determinism=ENSURE_DETERMINISM)) # train the neural network model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) model.fit(train_dataset, epochs=EPOCHS, validation_data=validation_dataset, verbose=2, callbacks=callbacks) import tensorflow as tf def akida_quantize_model( keras_model, weight_quantization: int = 4, activ_quantization: int = 4, input_weight_quantization: int = 8, ): import cnn2snn print("Performing post-training quantization...") akida_model = cnn2snn.quantize( keras_model, weight_quantization=weight_quantization, activ_quantization=activ_quantization, input_weight_quantization=input_weight_quantization, ) print("Performing post-training quantization OK") print("") return akida_model def akida_perform_qat( akida_model, train_dataset: tf.data.Dataset, validation_dataset: tf.data.Dataset, optimizer: str, fine_tune_loss: str, fine_tune_metrics: "list[str]", callbacks, stopping_metric: str = "val_accuracy", fit_verbose: int = 2, qat_epochs: int = 30, ): early_stopping = tf.keras.callbacks.EarlyStopping( monitor=stopping_metric, mode="max", verbose=1, min_delta=0, patience=10, restore_best_weights=True, ) callbacks.append(early_stopping) print("Running quantization-aware training...") akida_model.compile( optimizer=optimizer, loss=fine_tune_loss, metrics=fine_tune_metrics ) akida_model.fit( train_dataset, epochs=qat_epochs, verbose=fit_verbose, validation_data=validation_dataset, callbacks=callbacks, ) print("Running quantization-aware training OK") print("") return akida_model import tensorflow as tf def build_edge_learning_model(quantized_model, X_train, train_dataset: tf.data.Dataset, validation_dataset: tf.data.Dataset, callbacks, optimizer: str, fine_tune_loss: str, fine_tune_metrics: 'list[str]', additional_classes: int, neurons_per_class: int, num_classes: int, qat_function = None): from ei_tensorflow.brainchip.model import get_akida_converted_model import cnn2snn import akida import numpy as np from math import ceil import sys print("Looking for the feature extractor") feature_extractor_type = cnn2snn.quantization_layers.QuantizedReLU feature_extractor_found = False for layer in reversed(quantized_model.layers): if isinstance(layer, feature_extractor_type): print("") print(f"The assumed feature extractor layer is: {layer.name}") print("") print("Setting feature extractor bitwidth to 1") quantized_model = cnn2snn.quantize_layer(quantized_model, layer, bitwidth=1) feature_extractor_found = True break if not feature_extractor_found: print("EI_LOG_LEVEL=error ERROR: Can't find the feature extractor! Edge Learning model can't be built.") print("EI_LOG_LEVEL=info Try to modify 'feature_extractor_type' in the Keras Expert Mode") sys.exit(1) print("Looking for the feature extractor OK") #! After quantizing feature extractor layer to 1 bit, we need to retrain the model to recover the accuracy if qat_function: print("") print("Performing quantization-aware training...") quantized_model = qat_function(akida_model=quantized_model, train_dataset=train_dataset, validation_dataset=validation_dataset, optimizer=optimizer, fine_tune_loss=fine_tune_loss, fine_tune_metrics=fine_tune_metrics, callbacks=callbacks) print("Performing quantization-aware training OK") print("") else: print("EI_LOG_LEVEL=warn WARNING: QAT function not defined! Quantized model won't be retrained!", flush=True) akida_edge_model = get_akida_converted_model(quantized_model, MODEL_INPUT_SHAPE) #! Build edge learning compatible model akida_edge_model.pop_layer() layer_fc = akida.FullyConnected(name='akida_edge_layer', units=additional_classes * neurons_per_class, activation=False) akida_edge_model.add(layer_fc) print('Building edge compatible model OK') print('Compiling edge learning model') #! Calculate suggested number of weights as described in: #! https://doc.brainchipinc.com/examples/edge/plot_1_edge_learning_kws.html num_samples = ceil(0.1 * X_train.shape[0]) sparsities = akida.evaluate_sparsity(akida_edge_model, np.array(X_train[:num_samples]*255, dtype=np.uint8)) output_density = 1 - sparsities[akida_edge_model.layers[-2]] avg_spikes = akida_edge_model.layers[-2].output_dims[-1] * output_density #! Fix the number of weights to 1.2 times the average number of output spikes num_weights = int(1.2 * avg_spikes) print("===========================================") print(f"The number of weights is: {num_weights}") print("===========================================") try: akida_edge_model.compile(num_weights=num_weights, num_classes=additional_classes, learning_competition=0.1) except ValueError as err: print(f"EI_LOG_LEVEL=error ERROR: Can't compile Edge Learning model: {err}") print(f"EI_LOG_LEVEL=error ERROR: If the estimated number of weights is 0, try to increase the number of training cycles") sys.exit(1) print('Compiling edge learning model OK') print('') return akida_edge_model akida_model = akida_quantize_model(model) akida_model = akida_perform_qat( akida_model, train_dataset=train_dataset, validation_dataset=validation_dataset, optimizer=opt, fine_tune_loss='categorical_crossentropy', fine_tune_metrics=['accuracy'], callbacks=callbacks) akida_edge_model = build_edge_learning_model( quantized_model=akida_model, X_train=X_train, train_dataset=train_dataset, validation_dataset=validation_dataset, callbacks=callbacks, optimizer=opt, fine_tune_loss='categorical_crossentropy', fine_tune_metrics=['accuracy'], additional_classes=1, neurons_per_class=10, num_classes=classes, qat_function=akida_perform_qat)
Input layer (76,800 features)
2D conv / pool layer (32 filters, 3 kernel size, 1 layer)
2D conv / pool layer (16 filters, 3 kernel size, 1 layer)
Flatten layer
Dropout (rate 0.25)
Output layer (53 classes)