Flood Monitoring Org / Flood Monitor +1Hr Public
The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.

Target

Input Window Sizing

Cortex-M4F 80MHz

100 ms

128 kB

1024 kB

Filters

Status

DSP type

Model type

View

Data set

Variant

Sort

General

F1-score

Precision

Recall

100%
raw-dense-4ce
PERFORMANCE
LATENCY
1 ms of 100 ms
RAM
1 kB of 128 kB
ROM
12 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

5400000 ms |
2700000 ms |
Enabled

RAW

1

REGRESSION

0.005 | 100 | 100%

Type Filters Kernel Rate
dense 20 - -
dense 10 - -

10/11/2024, 9:41:26 AM

100%
raw-dense-1a0
PERFORMANCE
LATENCY
1 ms of 100 ms
RAM
2 kB of 128 kB
ROM
13 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

21600000 ms |
10800000 ms |
Enabled

RAW

1

REGRESSION

0.005 | 100 | 100%

Type Filters Kernel Rate
dense 20 - -
dense 10 - -

10/11/2024, 9:38:16 AM

100%
raw-dense-a60
PERFORMANCE
LATENCY
1 ms of 100 ms
RAM
1 kB of 128 kB
ROM
12 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

10800000 ms |
10800000 ms |
Enabled

RAW

1

REGRESSION

0.005 | 100 | 100%

Type Filters Kernel Rate
dense 20 - -
dense 10 - -

10/11/2024, 9:38:07 AM

100%
raw-dense-531
PERFORMANCE
LATENCY
1 ms of 100 ms
RAM
2 kB of 128 kB
ROM
16 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

43200000 ms |
10800000 ms |
Enabled

RAW

1

REGRESSION

0.005 | 100 | 100%

Type Filters Kernel Rate
dense 20 - -
dense 10 - -

10/11/2024, 9:37:52 AM