Winfried / Wakeword-Computer Public
The EON Tuner helps you quickly run hyper-parameter sweeps that explore different pre-processing + model architectures optimized for your defined objectives. Clone this project to use the EON Tuner.

Target

Run #3

Espressif ESP-EYE (ESP32 240MHz)

100 ms

4096 kB

4096 kB

Filters

Status

DSP type

Model type

View

Data set

Variant

Sort

General

F1-score

Precision

Recall

98%
mfe-conv1d-af9
PERFORMANCE
LATENCY
15 ms of 100 ms
RAM
8 kB of 4096 kB
ROM
70 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 98%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.25

3/14/2025, 1:53:30 PM

96%
mfe-conv1d-efe
PERFORMANCE
LATENCY
8 ms of 100 ms
RAM
8 kB of 4096 kB
ROM
70 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 96%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.25

3/14/2025, 1:54:24 PM

94%
mfe-conv1d-acc
PERFORMANCE
LATENCY
9 ms of 100 ms
RAM
6 kB of 4096 kB
ROM
35 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.025 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 94%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

3/14/2025, 1:54:59 PM

93%
mfe-conv1d-e88
PERFORMANCE
LATENCY
6 ms of 100 ms
RAM
7 kB of 4096 kB
ROM
43 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.032 | 0.032 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 93%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.25

3/14/2025, 2:02:54 PM

92%
mfe-conv1d-fff
PERFORMANCE
LATENCY
4 ms of 100 ms
RAM
5 kB of 4096 kB
ROM
35 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 92%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

3/14/2025, 1:58:05 PM

90%
mfe-conv1d-444
PERFORMANCE
LATENCY
5 ms of 100 ms
RAM
5 kB of 4096 kB
ROM
35 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 90%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.25

3/14/2025, 2:01:22 PM

88%
mfe-conv2d-4ea
PERFORMANCE
LATENCY
47 ms of 100 ms
RAM
10 kB of 4096 kB
ROM
38 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 88%

Type Filters Kernel Rate
Data augmentation
conv2d 8 3 -
conv2d 16 3 -
conv2d 32 3 -
dropout - - 0.5

3/14/2025, 2:02:28 PM

87%
mfcc-conv1d-59a
PERFORMANCE
LATENCY
9 ms of 100 ms
RAM
5 kB of 4096 kB
ROM
41 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.032 | 0.032 | 40

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 87%

Type Filters Kernel Rate
Data augmentation
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

3/14/2025, 1:55:23 PM

87%
mfcc-conv1d-0d0
PERFORMANCE
LATENCY
5 ms of 100 ms
RAM
4 kB of 4096 kB
ROM
34 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.025 | 40

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 87%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

3/14/2025, 2:00:52 PM

87%
mfcc-conv1d-bd1
PERFORMANCE
LATENCY
13 ms of 100 ms
RAM
5 kB of 4096 kB
ROM
41 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.032 | 0.032 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 87%

Type Filters Kernel Rate
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

3/14/2025, 1:53:39 PM

87%
mfcc-conv1d-85f
PERFORMANCE
LATENCY
5 ms of 100 ms
RAM
4 kB of 4096 kB
ROM
34 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.025 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 87%

Type Filters Kernel Rate
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

3/14/2025, 1:53:21 PM

87%
mfcc-conv1d-3ec
PERFORMANCE
LATENCY
13 ms of 100 ms
RAM
8 kB of 4096 kB
ROM
69 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.025 | 40

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 87%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.5

3/14/2025, 1:53:59 PM

86%
mfcc-conv1d-0fa
PERFORMANCE
LATENCY
7 ms of 100 ms
RAM
6 kB of 4096 kB
ROM
42 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.025 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 86%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

3/14/2025, 1:57:49 PM

86%
mfcc-conv1d-f45
PERFORMANCE
LATENCY
7 ms of 100 ms
RAM
4 kB of 4096 kB
ROM
34 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.032 | 0.032 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 86%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

3/14/2025, 1:57:43 PM

85%
mfcc-conv1d-cf2
PERFORMANCE
LATENCY
10 ms of 100 ms
RAM
5 kB of 4096 kB
ROM
42 kB of 4096 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.032 | 0.032 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 85%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

3/14/2025, 1:58:19 PM