Kosmas Deligkaris / FrogAI-FirstTest Public
The EON Tuner helps you quickly run hyper-parameter sweeps that explore different pre-processing + model architectures optimized for your defined objectives. Clone this project to use the EON Tuner.

Target

Run #2

Sony Spresense (Cortex-M4F 156MHz)

100 ms

1536 kB

8192 kB

Filters

Status

DSP type

Model type

View

Data set

Variant

Sort

General

F1-score

Precision

Recall

mfcc-bdf
PERFORMANCE
LATENCY
100 ms
RAM
1536 kB
ROM
8192 kB
Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

MFCC
Parameter Value
pre_cof 0.98
win_size 101
dspBlockId 41
fft_length 256
num_filters 40
frame_length 0.05
num_cepstral 13
low_frequency 0
high_frequency 0
frame_stride_pct 0.5
KERAS
Parameter Value
dropout 0.25
dimension conv1d
convLayers 2
learningRate 0.005
trainingCycles 100
convBaseFilters 16
augmentationPolicySpectrogram [object Object]

1

mfe-37d
PERFORMANCE
LATENCY
100 ms
RAM
1536 kB
ROM
8192 kB
Unused
TIME-SERIES INPUT

1000 ms |
500 ms |
Enabled

MFE
Parameter Value
dspBlockId 36
KERAS-TRANSFER-KWS
Parameter Value
model transfer_kws_mobilenetv1_a1_d100
learningRate 0.01
trainingCycles 30

0