Mathilde Bindslev / ML-mini-project Public
The EON Tuner helps you quickly run hyper-parameter sweeps that explore different pre-processing + model architectures optimized for your defined objectives. Clone this project to use the EON Tuner.

Target

EON Tuner

Nvidia Jetson Nano

100 ms

4194304 kB

16777216 kB

Filters

Status

DSP type

Model type

View

Data set

Variant

Sort

General

F1-score

Precision

Recall

81%
mfe-conv1d-3e5
PERFORMANCE
LATENCY
1 ms of 100 ms
RAM
10 kB of 4194304 kB
ROM
65 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.032 | 0.032 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 81%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

11/21/2024, 8:14:27 PM

76%
mfe-conv1d-cba
PERFORMANCE
LATENCY
3 ms of 100 ms
RAM
23 kB of 4194304 kB
ROM
37 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.025 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 76%

Type Filters Kernel Rate
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

11/21/2024, 8:07:31 PM

75%
mfe-conv1d-9f0
PERFORMANCE
LATENCY
2 ms of 100 ms
RAM
19 kB of 4194304 kB
ROM
36 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.032 | 0.032 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 75%

Type Filters Kernel Rate
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

11/21/2024, 8:05:53 PM

65%
mfe-conv2d-d62
PERFORMANCE
LATENCY
2 ms of 100 ms
RAM
35 kB of 4194304 kB
ROM
40 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 65%

Type Filters Kernel Rate
conv2d 8 3 -
conv2d 16 3 -
dropout - - 0.25

11/21/2024, 7:57:38 PM

53%
mfe-conv1d-8d1
PERFORMANCE
LATENCY
2 ms of 100 ms
RAM
19 kB of 4194304 kB
ROM
65 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.032 | 0.032 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 53%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.25

11/21/2024, 8:03:09 PM

37%
mfe-conv2d-91b
PERFORMANCE
LATENCY
2 ms of 100 ms
RAM
35 kB of 4194304 kB
ROM
40 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 37%

Type Filters Kernel Rate
Data augmentation
conv2d 8 3 -
conv2d 16 3 -
dropout - - 0.25

11/21/2024, 8:11:31 PM

37%
mfcc-conv2d-97d
PERFORMANCE
LATENCY
4 ms of 100 ms
RAM
31 kB of 4194304 kB
ROM
37 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.032 | 0.032 | 40

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 37%

Type Filters Kernel Rate
conv2d 8 3 -
conv2d 16 3 -
dropout - - 0.5

11/21/2024, 7:57:40 PM

37%
mfe-conv2d-99e
PERFORMANCE
LATENCY
2 ms of 100 ms
RAM
49 kB of 4194304 kB
ROM
47 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.032 | 0.032 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 37%

Type Filters Kernel Rate
Data augmentation
conv2d 8 3 -
conv2d 16 3 -
dropout - - 0.25

11/21/2024, 8:07:20 PM

37%
mfe-conv1d-077
PERFORMANCE
LATENCY
3 ms of 100 ms
RAM
23 kB of 4194304 kB
ROM
164 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.025 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 37%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.5

11/21/2024, 7:57:07 PM

36%
mfcc-conv2d-ede
PERFORMANCE
LATENCY
1 ms of 100 ms
RAM
22 kB of 4194304 kB
ROM
40 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.025 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 36%

Type Filters Kernel Rate
conv2d 8 3 -
conv2d 16 3 -
dropout - - 0.5

11/21/2024, 8:00:08 PM

32%
mfcc-conv1d-fd8
PERFORMANCE
LATENCY
1 ms of 100 ms
RAM
6 kB of 4194304 kB
ROM
36 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.032 | 0.032 | 40

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 32%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

11/21/2024, 8:04:29 PM

29%
mfcc-conv2d-fa3
PERFORMANCE
LATENCY
4 ms of 100 ms
RAM
36 kB of 4194304 kB
ROM
40 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.025 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 29%

Type Filters Kernel Rate
Data augmentation
conv2d 8 3 -
conv2d 16 3 -
dropout - - 0.5

11/21/2024, 8:00:06 PM

28%
mfcc-conv2d-728
PERFORMANCE
LATENCY
1 ms of 100 ms
RAM
12 kB of 4194304 kB
ROM
34 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.05 | 40

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 28%

Type Filters Kernel Rate
Data augmentation
conv2d 8 3 -
conv2d 16 3 -
dropout - - 0.5

11/21/2024, 8:12:18 PM

25%
mfcc-conv2d-681
PERFORMANCE
LATENCY
2 ms of 100 ms
RAM
35 kB of 4194304 kB
ROM
54 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.05 | 32

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 25%

Type Filters Kernel Rate
conv2d 16 3 -
conv2d 32 3 -
dropout - - 0.25

11/21/2024, 8:00:01 PM

25%
mfcc-conv2d-093
PERFORMANCE
LATENCY
1 ms of 100 ms
RAM
12 kB of 4194304 kB
ROM
49 kB of 16777216 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.05 | 40

ACCURACY (OVERALL)
CLASSIFICATION

0.005 | 100 | 25%

Type Filters Kernel Rate
Data augmentation
conv2d 8 3 -
conv2d 16 3 -
conv2d 32 3 -
dropout - - 0.25

11/21/2024, 8:02:29 PM