Mathilde Bindslev / ML-mini-project Public

Training settings

Please provide a valid number of training cycles (numeric only)
Please provide a valid number for the learning rate (between 0 and 1)
Please provide a valid training processor option

Augmentation settings

Advanced training settings

Audio training options

Neural network architecture

import tensorflow as tf
from tensorflow.keras.models import Sequential
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Input layer (3,168 features)
Reshape layer (32 columns)
1D conv / pool layer (32 filters, 3 kernel size, 1 layer)
1D conv / pool layer (64 filters, 3 kernel size, 1 layer)
1D conv / pool layer (128 filters, 3 kernel size, 1 layer)
1D conv / pool layer (256 filters, 3 kernel size, 1 layer)
Flatten layer
Dropout (rate 0.5)
Output layer (5 classes)

Model

Model version: