Deploy to any Linux-based development board
Edge Impulse for Linux lets you run your models on any Linux-based development board,
with SDKs for Node.js, Python, Go and C++ to integrate your models quickly into
your application.
- Install the Edge Impulse Linux CLI
- Run
edge-impulse-linux-runner
(run with --clean
to switch projects)
Run your model as a Docker container
To run your model as a container with an HTTP interface, use:
Container:
public.ecr.aws/g7a8t7v6/inference-container:94462e7d9910c99b794f598c44e5f142d3d648d0
Arguments:
--api-key ei_df94e6fd285e68de1d515d56166378f25679362df5362c9f122fc2dc2369bb0e --run-http-server 1337 --impulse-id 3
For example, in a one-liner locally:
docker run --rm -it \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container:94462e7d9910c99b794f598c44e5f142d3d648d0 \
--api-key ei_df94e6fd285e68de1d515d56166378f25679362df5362c9f122fc2dc2369bb0e \
--run-http-server 1337 \
--impulse-id 3
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson's GPUs (JetPack 4.6.x), use:
Container:
public.ecr.aws/g7a8t7v6/inference-container-jetson:9eb30b5b67d462a6569f411dd03a44c9d1993993
Arguments:
--api-key ei_df94e6fd285e68de1d515d56166378f25679362df5362c9f122fc2dc2369bb0e --run-http-server 1337 --impulse-id 3
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container-jetson:9eb30b5b67d462a6569f411dd03a44c9d1993993 \
--api-key ei_df94e6fd285e68de1d515d56166378f25679362df5362c9f122fc2dc2369bb0e \
--run-http-server 1337 \
--impulse-id 3
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson Orin's GPUs (JetPack 5.1.x), use:
Container:
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin:a14935a55d84927d6eed21d8d9c2a40a633cd77d
Arguments:
--api-key ei_df94e6fd285e68de1d515d56166378f25679362df5362c9f122fc2dc2369bb0e --run-http-server 1337 --impulse-id 3
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin:a14935a55d84927d6eed21d8d9c2a40a633cd77d \
--api-key ei_df94e6fd285e68de1d515d56166378f25679362df5362c9f122fc2dc2369bb0e \
--run-http-server 1337 \
--impulse-id 3
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson Orin's GPUs (JetPack 6.0), use:
Container:
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin-6-0:aec2a7951d03a0f9eb769b8a7b0dd63c5e9c03bc
Arguments:
--api-key ei_df94e6fd285e68de1d515d56166378f25679362df5362c9f122fc2dc2369bb0e --run-http-server 1337 --impulse-id 3
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin-6-0:aec2a7951d03a0f9eb769b8a7b0dd63c5e9c03bc \
--api-key ei_df94e6fd285e68de1d515d56166378f25679362df5362c9f122fc2dc2369bb0e \
--run-http-server 1337 \
--impulse-id 3
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.