Clemens / fruit_veggie_96_96_rgb Public
The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.

Target

No name set

Espressif ESP-EYE (ESP32 240MHz)

100 ms

4096 kB

4096 kB

Filters

Status

DSP type

Model type

View

Data set

Variant

Sort

General

F1-score

Precision

Recall

rgb-mobilenetv1-ed5
PERFORMANCE
LATENCY
100 ms
RAM
4096 kB
ROM
4096 kB
Unused
IMAGE INPUT

160 |
160

IMAGE

RGB

ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)

0.0005 | 20

MobileNetV1 0.25
16 | 0.5 |

rgb-mobilenetv1-901
PERFORMANCE
LATENCY
100 ms
RAM
4096 kB
ROM
4096 kB
Unused
IMAGE INPUT

160 |
160

IMAGE

RGB

ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)

0.0005 | 20

MobileNetV1 0.25
16 | 0.1 |

grayscale-conv2d-2b1
PERFORMANCE
LATENCY
100 ms
RAM
4096 kB
ROM
4096 kB
Unused
IMAGE INPUT

64 |
64

IMAGE

Grayscale

ACCURACY (KERAS)
Confusion matrices are not available for this model
CLASSIFICATION

0.0005 | 10

Type Filters Kernel Rate
conv2d 8 3 -
conv2d 16 3 -
conv2d 32 3 -
conv2d 64 3 -
dropout - - 0.5

rgb-mobilenetv2-440
PERFORMANCE
LATENCY
100 ms
RAM
4096 kB
ROM
4096 kB
Unused
IMAGE INPUT

96 |
96

IMAGE

RGB

ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)

0.0005 | 20

MobileNetV2 160x160 0.5
64 | 0.1

grayscale-mobilenetv2-57d
PERFORMANCE
LATENCY
100 ms
RAM
4096 kB
ROM
4096 kB
Unused
IMAGE INPUT

160 |
160

IMAGE

Grayscale

ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)

0.0005 | 20

MobileNetV2 0.1
64 | 0.1

rgb-mobilenetv2-18e
PERFORMANCE
LATENCY
100 ms
RAM
4096 kB
ROM
4096 kB
Unused
IMAGE INPUT

160 |
160

IMAGE

RGB

ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)

0.0005 | 20

MobileNetV2 0.05
64 | 0.1

rgb-conv2d-568
PERFORMANCE
LATENCY
100 ms
RAM
4096 kB
ROM
4096 kB
Unused
IMAGE INPUT

32 |
32

IMAGE

RGB

ACCURACY (KERAS)
Confusion matrices are not available for this model
CLASSIFICATION

0.0005 | 10

Type Filters Kernel Rate
conv2d 16 3 -
conv2d 32 3 -
conv2d 64 3 -
conv2d 128 3 -
dropout - - 0.5

rgb-conv2d-0ac
PERFORMANCE
LATENCY
100 ms
RAM
4096 kB
ROM
4096 kB
Unused
IMAGE INPUT

32 |
32

IMAGE

RGB

ACCURACY (KERAS)
Confusion matrices are not available for this model
CLASSIFICATION

0.0005 | 10

Type Filters Kernel Rate
conv2d 16 3 -
conv2d 32 3 -
conv2d 64 3 -
dropout - - 0.5

rgb-mobilenetv1-d98
PERFORMANCE
LATENCY
100 ms
RAM
4096 kB
ROM
4096 kB
Unused
IMAGE INPUT

160 |
160

IMAGE

RGB

ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)

0.0005 | 20

MobileNetV1 0.2
64 | 0.5 |

rgb-mobilenetv2-e84
PERFORMANCE
LATENCY
100 ms
RAM
4096 kB
ROM
4096 kB
Unused
IMAGE INPUT

160 |
160

IMAGE

RGB

ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)

0.0005 | 20

MobileNetV2 0.05
64 | 0.5 |