Deploy to any Linux-based development board
Edge Impulse for Linux lets you run your models on any Linux-based development board,
with SDKs for Node.js, Python, Go and C++ to integrate your models quickly into
your application.
- Install the Edge Impulse Linux CLI
- Run
edge-impulse-linux-runner
(run with --clean
to switch projects)
Run your model as a Docker container
To run your model as a container with an HTTP interface, use:
Container:
public.ecr.aws/g7a8t7v6/inference-container:f2e07e68a4a24fd993557e8aac88d05d910e92ff
Arguments:
--api-key ei_2994dcb172c1bb8ca37867ce0c9e6116a527816c4f6b21b967dd6e1cad217218 --run-http-server 1337 --impulse-id 2
For example, in a one-liner locally:
docker run --rm -it \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container:f2e07e68a4a24fd993557e8aac88d05d910e92ff \
--api-key ei_2994dcb172c1bb8ca37867ce0c9e6116a527816c4f6b21b967dd6e1cad217218 \
--run-http-server 1337 \
--impulse-id 2
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson's GPUs (JetPack 4.6.x), use:
Container:
public.ecr.aws/g7a8t7v6/inference-container-jetson:7129779fa01699692818ab9f372f98dc90100124
Arguments:
--api-key ei_2994dcb172c1bb8ca37867ce0c9e6116a527816c4f6b21b967dd6e1cad217218 --run-http-server 1337 --impulse-id 2
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container-jetson:7129779fa01699692818ab9f372f98dc90100124 \
--api-key ei_2994dcb172c1bb8ca37867ce0c9e6116a527816c4f6b21b967dd6e1cad217218 \
--run-http-server 1337 \
--impulse-id 2
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson Orin's GPUs (JetPack 5.1.x), use:
Container:
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin:bf5ec88854ccaee21f91d828c6277f0c1d2e6baa
Arguments:
--api-key ei_2994dcb172c1bb8ca37867ce0c9e6116a527816c4f6b21b967dd6e1cad217218 --run-http-server 1337 --impulse-id 2
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin:bf5ec88854ccaee21f91d828c6277f0c1d2e6baa \
--api-key ei_2994dcb172c1bb8ca37867ce0c9e6116a527816c4f6b21b967dd6e1cad217218 \
--run-http-server 1337 \
--impulse-id 2
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson Orin's GPUs (JetPack 6.0), use:
Container:
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin-6-0:b6fc7db18912a5774f11c7a507daa1e42515f473
Arguments:
--api-key ei_2994dcb172c1bb8ca37867ce0c9e6116a527816c4f6b21b967dd6e1cad217218 --run-http-server 1337 --impulse-id 2
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin-6-0:b6fc7db18912a5774f11c7a507daa1e42515f473 \
--api-key ei_2994dcb172c1bb8ca37867ce0c9e6116a527816c4f6b21b967dd6e1cad217218 \
--run-http-server 1337 \
--impulse-id 2
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.