The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.
Target
EON Tuner run #1
Xiao ESP32S3 (Sense)
10 ms
8192 kB
8192 kB
Filters
Status
DSP type
Model type
View
Data set
Variant
Sort
General
F1-score
Precision
Recall
mfe-conv2d-31b
PERFORMANCE
LATENCY
10 ms
RAM
8192 kB
ROM
8192 kB
Unused
TIME-SERIES INPUT
1000 ms
|
500 ms
|
Enabled
MFE
0.025 | 0.01 | 41
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
conv2d | 8 | 3 | - |
dropout | - | - | 0.5 |
conv2d | 16 | 3 | - |
dropout | - | - | 0.5 |
Training output
Hide
Click 'Run EON Tuner' to begin