Datasets by Edge Impulse / Audio Classification - Glass breaking Public
The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.

Target

No name set

Cortex-M7 216MHz

100 ms

340 kB

1024 kB

Filters

Status

DSP type

Model type

View

Data set

Variant

Sort

General

F1-score

Precision

Recall

100%
spectr-conv1d-541
PERFORMANCE
LATENCY
79 ms of 100 ms
RAM
60 kB of 340 kB
ROM
44 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

SPECTROGRAM

0.075 | 0.0375 | -52

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 100%

Type Filters Kernel Rate
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

7/23/2024, 2:16:23 PM

99%
spectr-conv2d-41c
PERFORMANCE
LATENCY
104 ms of 100 ms
Exceeds target by 4 ms
RAM
112 kB of 340 kB
ROM
45 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

SPECTROGRAM

0.075 | 0.0375 | -52

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 99%

Type Filters Kernel Rate
conv2d 8 3 -
conv2d 16 3 -
conv2d 32 3 -
dropout - - 0.5

7/23/2024, 2:17:18 PM

99%
spectr-conv1d-c52
PERFORMANCE
LATENCY
95 ms of 100 ms
RAM
71 kB of 340 kB
ROM
49 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

SPECTROGRAM

0.025 | 0.025 | -32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 99%

Type Filters Kernel Rate
Data augmentation
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.25

7/23/2024, 2:04:13 PM

97%
spectr-conv1d-34a
PERFORMANCE
LATENCY
30 ms of 100 ms
RAM
36 kB of 340 kB
ROM
71 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

SPECTROGRAM

0.075 | 0.075 | -32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 97%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.5

7/23/2024, 2:14:31 PM

97%
spectr-conv1d-a9c
PERFORMANCE
LATENCY
81 ms of 100 ms
RAM
62 kB of 340 kB
ROM
72 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

SPECTROGRAM

0.05 | 0.025 | -52

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 97%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.5

7/23/2024, 2:11:06 PM

96%
spectr-conv1d-562
PERFORMANCE
LATENCY
59 ms of 100 ms
RAM
51 kB of 340 kB
ROM
72 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

SPECTROGRAM

0.075 | 0.0375 | -52

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 96%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.25

7/23/2024, 2:29:14 PM

96%
spectr-conv1d-a9d
PERFORMANCE
LATENCY
177 ms of 100 ms
Exceeds target by 77 ms
RAM
132 kB of 340 kB
ROM
40 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

SPECTROGRAM

0.025 | 0.0125 | -72

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 96%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

7/23/2024, 2:24:33 PM

96%
spectr-conv1d-e65
PERFORMANCE
LATENCY
63 ms of 100 ms
RAM
51 kB of 340 kB
ROM
175 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

SPECTROGRAM

0.05 | 0.05 | -32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 96%

Type Filters Kernel Rate
Data augmentation
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
conv1d 256 3 -
dropout - - 0.25

7/23/2024, 2:22:06 PM

96%
spectr-conv1d-4b5
PERFORMANCE
LATENCY
93 ms of 100 ms
RAM
74 kB of 340 kB
ROM
73 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

SPECTROGRAM

0.025 | 0.025 | -52

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 96%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.5

7/23/2024, 2:17:21 PM

96%
spectr-conv2d-427
PERFORMANCE
LATENCY
155 ms of 100 ms
Exceeds target by 55 ms
RAM
157 kB of 340 kB
ROM
62 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

SPECTROGRAM

0.05 | 0.025 | -52

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 96%

Type Filters Kernel Rate
Data augmentation
conv2d 8 3 -
conv2d 16 3 -
conv2d 32 3 -
conv2d 64 3 -
dropout - - 0.5

7/23/2024, 2:10:29 PM

92%
spectr-conv2d-e6d
PERFORMANCE
LATENCY
169 ms of 100 ms
Exceeds target by 69 ms
RAM
222 kB of 340 kB
ROM
54 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

SPECTROGRAM

0.025 | 0.0125 | -72

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 92%

Type Filters Kernel Rate
conv2d 8 3 -
conv2d 16 3 -
conv2d 32 3 -
dropout - - 0.5

7/23/2024, 2:04:38 PM

89%
spectr-conv1d-fa7
PERFORMANCE
LATENCY
66 ms of 100 ms
RAM
55 kB of 340 kB
ROM
37 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

SPECTROGRAM

0.025 | 0.025 | -52

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 89%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

7/23/2024, 2:28:19 PM

mfe-conv2d-d03
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
Data augmentation
conv2d 8 3 -
conv2d 16 3 -
dropout - - 0.25

mfcc-conv1d-ca9
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

MFCC

0.02 | 0.01 | 40

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
Data augmentation
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.25

mfcc-conv1d-41f
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

MFCC

0.02 | 0.01 | 40

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
conv1d 256 3 -
dropout - - 0.25