The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.
Target
No name set
Raspberry Pi 4
100 ms
8388608 kB
33554432 kB
Filters
Status
DSP type
Model type
View
Data set
Variant
Sort
General
F1-score
Precision
Recall
grayscale-fomo-56e
PERFORMANCE
LATENCY
100 ms
RAM
8388608 kB
ROM
33554432 kB
Unused
IMAGE INPUT
160
|
160
IMAGE
Grayscale
OBJECT DETECTION (IMAGES)
0.01 | 60
FOMO (MobileNetV2 0.35)
|
int8
rgb-fomo-0a1
PERFORMANCE
LATENCY
100 ms
RAM
8388608 kB
ROM
33554432 kB
Unused
IMAGE INPUT
160
|
160
IMAGE
RGB
OBJECT DETECTION (IMAGES)
0.1 | 60
FOMO (MobileNetV2 0.35)
|
int8
rgb-fomo-32c
PERFORMANCE
LATENCY
100 ms
RAM
8388608 kB
ROM
33554432 kB
Unused
IMAGE INPUT
160
|
160
IMAGE
RGB
OBJECT DETECTION (IMAGES)
0.01 | 30
FOMO (MobileNetV2 0.35)
|
int8
grayscale-fomo-408
PERFORMANCE
LATENCY
100 ms
RAM
8388608 kB
ROM
33554432 kB
Unused
IMAGE INPUT
160
|
160
IMAGE
Grayscale
OBJECT DETECTION (IMAGES)
0.1 | 30
FOMO (MobileNetV2 0.35)
|
int8
rgb-fomo-5f9
PERFORMANCE
LATENCY
100 ms
RAM
8388608 kB
ROM
33554432 kB
Unused
IMAGE INPUT
160
|
160
IMAGE
RGB
OBJECT DETECTION (IMAGES)
0.1 | 30
FOMO (MobileNetV2 0.35)
|
int8
rgb-fomo-fce
PERFORMANCE
LATENCY
100 ms
RAM
8388608 kB
ROM
33554432 kB
Unused
IMAGE INPUT
160
|
160
IMAGE
RGB
OBJECT DETECTION (IMAGES)
0.01 | 60
FOMO (MobileNetV2 0.35)
|
int8
rgb-fomo-276
PERFORMANCE
LATENCY
100 ms
RAM
8388608 kB
ROM
33554432 kB
Unused
IMAGE INPUT
160
|
160
IMAGE
RGB
OBJECT DETECTION (IMAGES)
0.1 | 60
FOMO (MobileNetV2 0.35)
|
int8
Training output
Hide
Click 'Run EON Tuner' to begin