Morten / thunderboard_beer Public
The EON Tuner helps you quickly run hyper-parameter sweeps that explore different pre-processing + model architectures optimized for your defined objectives. Clone this project to use the EON Tuner.

Target

oel_spotting

Cortex-M4F 80MHz

100 ms

128 kB

1024 kB

Filters

Status

DSP type

Model type

View

Data set

Variant

Sort

General

F1-score

Precision

Recall

mfe-conv2d-424
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.02 | 0.02 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
conv2d 8 3 -
conv2d 16 3 -
conv2d 32 3 -
dropout - - 0.5

mfcc-conv2d-5ea
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
conv2d 16 3 -
conv2d 32 3 -
conv2d 64 3 -
conv2d 128 3 -
dropout - - 0.25

mfcc-conv2d-d42
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
Data augmentation
conv2d 32 3 -
conv2d 64 3 -
dropout - - 0.5

mfcc-conv1d-001
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.02 | 0.01 | 40

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.25

mfcc-conv1d-e52
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.02 | 0.01 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

mfe-conv1d-715
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.02 | 0.01 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

mfcc-conv2d-525
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.02 | 0.02 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
Data augmentation
conv2d 8 3 -
conv2d 16 3 -
dropout - - 0.5

mfcc-conv1d-36f
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.02 | 0.01 | 40

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

mfe-conv2d-68a
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.02 | 0.02 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
conv2d 8 3 -
conv2d 16 3 -
dropout - - 0.25

mfe-conv1d-530
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.032 | 0.016 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
Data augmentation
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
conv1d 256 3 -
dropout - - 0.5

mfcc-conv2d-7cd
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.02 | 0.02 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
Data augmentation
conv2d 8 3 -
conv2d 16 3 -
conv2d 32 3 -
conv2d 64 3 -
dropout - - 0.25

mfcc-conv2d-94c
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.032 | 0.032 | 40

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
conv2d 16 3 -
conv2d 32 3 -
conv2d 64 3 -
dropout - - 0.5

mfcc-conv1d-432
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.02 | 0.02 | 40

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
Data augmentation
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
conv1d 256 3 -
dropout - - 0.25

mfe-conv2d-87d
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.032 | 0.032 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
Data augmentation
conv2d 16 3 -
conv2d 32 3 -
dropout - - 0.5

mfe-conv2d-9a6
PERFORMANCE
LATENCY
100 ms
RAM
128 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.032 | 0.032 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100

Type Filters Kernel Rate
Data augmentation
conv2d 8 3 -
conv2d 16 3 -
conv2d 32 3 -
conv2d 64 3 -
dropout - - 0.25