Deploy to any Linux-based development board
Edge Impulse for Linux lets you run your models on any Linux-based development board,
with SDKs for Node.js, Python, Go and C++ to integrate your models quickly into
your application.
- Install the Edge Impulse Linux CLI
- Run
edge-impulse-linux-runner
(run with --clean
to switch projects)
Run your model as a Docker container
To run your model as a container with an HTTP interface, use:
Container:
public.ecr.aws/g7a8t7v6/inference-container:7cf73c2a332e73184506c1e333773bd96587a680
Arguments:
--api-key ei_b4c6aa46274055b9e97949d98974f420fcfff096ba7f2f80a95ced60a49a8030 --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container:7cf73c2a332e73184506c1e333773bd96587a680 \
--api-key ei_b4c6aa46274055b9e97949d98974f420fcfff096ba7f2f80a95ced60a49a8030 \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson's GPUs (JetPack 4.6.x), use:
Container:
public.ecr.aws/g7a8t7v6/inference-container-jetson:b7e0dc65374f7562ff72a40dd4c6623c8df0b5a9
Arguments:
--api-key ei_b4c6aa46274055b9e97949d98974f420fcfff096ba7f2f80a95ced60a49a8030 --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container-jetson:b7e0dc65374f7562ff72a40dd4c6623c8df0b5a9 \
--api-key ei_b4c6aa46274055b9e97949d98974f420fcfff096ba7f2f80a95ced60a49a8030 \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson Orin's GPUs (JetPack 5.1.x), use:
Container:
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin:fc4ef2bb6ce3e51bd1a391551d0d57ca745d8257
Arguments:
--api-key ei_b4c6aa46274055b9e97949d98974f420fcfff096ba7f2f80a95ced60a49a8030 --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin:fc4ef2bb6ce3e51bd1a391551d0d57ca745d8257 \
--api-key ei_b4c6aa46274055b9e97949d98974f420fcfff096ba7f2f80a95ced60a49a8030 \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson Orin's GPUs (JetPack 6.0), use:
Container:
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin-6-0:bebbe4e4fd1d6ced9b04da167c86411c50d2dc48
Arguments:
--api-key ei_b4c6aa46274055b9e97949d98974f420fcfff096ba7f2f80a95ced60a49a8030 --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin-6-0:bebbe4e4fd1d6ced9b04da167c86411c50d2dc48 \
--api-key ei_b4c6aa46274055b9e97949d98974f420fcfff096ba7f2f80a95ced60a49a8030 \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.