Student / Sorting Public
The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.

Target

No name set

Espressif ESP-EYE (ESP32 240MHz)

100 ms

4096 kB

4096 kB

Filters

Status

DSP type

Model type

View

Data set

Variant

Sort

General

F1-score

Precision

Recall

100%
rgb-ssd-664
PERFORMANCE
LATENCY
349207 ms of 100 ms
Exceeds target by 349107 ms
RAM
4 kB of 4096 kB
ROM
11232 kB of 4096 kB
Exceeds target by 7136 kB
DSP NN Unused
IMAGE INPUT

320 |
320

IMAGE

RGB

OBJECT DETECTION (IMAGES)

0.01 | 30 | 100%

MobileNetV2 SSD FPN-Lite | float32

2/24/2024, 11:33:23 AM

100%
rgb-ssd-d74
PERFORMANCE
LATENCY
323216 ms of 100 ms
Exceeds target by 323116 ms
RAM
4 kB of 4096 kB
ROM
11232 kB of 4096 kB
Exceeds target by 7136 kB
DSP NN Unused
IMAGE INPUT

320 |
320

IMAGE

RGB

OBJECT DETECTION (IMAGES)

0.01 | 60 | 100%

MobileNetV2 SSD FPN-Lite | float32

2/24/2024, 11:27:26 AM

10%
rgb-ssd-8f3
PERFORMANCE
LATENCY
292699 ms of 100 ms
Exceeds target by 292599 ms
RAM
4 kB of 4096 kB
ROM
11232 kB of 4096 kB
Exceeds target by 7136 kB
DSP NN Unused
IMAGE INPUT

320 |
320

IMAGE

RGB

OBJECT DETECTION (IMAGES)

0.001 | 60 | 10%

MobileNetV2 SSD FPN-Lite | float32

2/24/2024, 11:35:36 AM

10%
rgb-ssd-c65
PERFORMANCE
LATENCY
345460 ms of 100 ms
Exceeds target by 345360 ms
RAM
4 kB of 4096 kB
ROM
11232 kB of 4096 kB
Exceeds target by 7136 kB
DSP NN Unused
IMAGE INPUT

320 |
320

IMAGE

RGB

OBJECT DETECTION (IMAGES)

0.001 | 30 | 10%

MobileNetV2 SSD FPN-Lite | float32

2/24/2024, 11:25:29 AM