The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.
Target
No name set
Renesas RA6M5 (Cortex-M33 200MHz)
100 ms
512 kB
2048 kB
Filters
Status
DSP type
Model type
View
Data set
Variant
Sort
General
F1-score
Precision
Recall
99%
spectr-dense-cd3
PERFORMANCE
LATENCY
12 ms of 100 ms
RAM
13 kB of 512 kB
ROM
19 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
1000 ms |
Enabled
SPECTRAL-ANALYSIS
64
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 99%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 20 | - | - |
dense | 10 | - | - |
dense | 5 | - | - |
dropout | - | - | 0.25 |
9/17/2023, 4:51:49 PM
99%
spectr-dense-750
PERFORMANCE
LATENCY
37 ms of 100 ms
RAM
12 kB of 512 kB
ROM
18 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
1000 ms |
Enabled
SPECTRAL-ANALYSIS
16
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 99%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 40 | - | - |
dense | 20 | - | - |
dense | 10 | - | - |
dropout | - | - | 0.5 |
9/17/2023, 4:52:02 PM
99%
spectr-dense-d88
PERFORMANCE
LATENCY
12 ms of 100 ms
RAM
12 kB of 512 kB
ROM
24 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
1000 ms |
Enabled
SPECTRAL-ANALYSIS
64
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 99%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 40 | - | - |
dense | 20 | - | - |
dropout | - | - | 0.5 |
9/17/2023, 4:53:01 PM
98%
spectr-dense-c48
PERFORMANCE
LATENCY
12 ms of 100 ms
RAM
12 kB of 512 kB
ROM
24 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
2000 ms |
Enabled
SPECTRAL-ANALYSIS
64
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 98%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 40 | - | - |
dense | 20 | - | - |
dropout | - | - | 0.25 |
9/17/2023, 4:49:36 PM
97%
spectr-dense-f15
PERFORMANCE
LATENCY
37 ms of 100 ms
RAM
12 kB of 512 kB
ROM
18 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
2000 ms |
Enabled
SPECTRAL-ANALYSIS
16
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 97%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 40 | - | - |
dense | 20 | - | - |
dense | 10 | - | - |
dropout | - | - | 0.5 |
9/17/2023, 4:52:33 PM
97%
spectr-dense-b82
PERFORMANCE
LATENCY
12 ms of 100 ms
RAM
13 kB of 512 kB
ROM
24 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
2000 ms |
Enabled
SPECTRAL-ANALYSIS
64
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 97%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 40 | - | - |
dense | 20 | - | - |
dense | 10 | - | - |
dropout | - | - | 0.25 |
9/17/2023, 4:50:49 PM
95%
spectr-dense-012
PERFORMANCE
LATENCY
37 ms of 100 ms
RAM
12 kB of 512 kB
ROM
18 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
2000 ms |
Enabled
SPECTRAL-ANALYSIS
16
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 95%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 40 | - | - |
dense | 20 | - | - |
dropout | - | - | 0.5 |
9/17/2023, 4:50:19 PM
95%
spectr-dense-520
PERFORMANCE
LATENCY
11 ms of 100 ms
RAM
15 kB of 512 kB
ROM
22 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
1000 ms |
Enabled
SPECTRAL-ANALYSIS
16
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 95%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 40 | - | - |
dense | 20 | - | - |
dense | 10 | - | - |
dropout | - | - | 0.5 |
9/17/2023, 4:52:39 PM
95%
spectr-dense-21e
PERFORMANCE
LATENCY
11 ms of 100 ms
RAM
15 kB of 512 kB
ROM
22 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
1000 ms |
Enabled
SPECTRAL-ANALYSIS
16
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 95%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 40 | - | - |
dense | 20 | - | - |
dense | 10 | - | - |
dropout | - | - | 0.25 |
9/17/2023, 4:51:23 PM
95%
spectr-dense-8bf
PERFORMANCE
LATENCY
11 ms of 100 ms
RAM
15 kB of 512 kB
ROM
22 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
1000 ms |
Enabled
SPECTRAL-ANALYSIS
16
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 95%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 40 | - | - |
dense | 20 | - | - |
dropout | - | - | 0.25 |
9/17/2023, 4:50:13 PM
92%
spectr-dense-d35
PERFORMANCE
LATENCY
11 ms of 100 ms
RAM
15 kB of 512 kB
ROM
22 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
2000 ms |
Enabled
SPECTRAL-ANALYSIS
16
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 92%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 40 | - | - |
dense | 20 | - | - |
dense | 10 | - | - |
dropout | - | - | 0.25 |
9/17/2023, 4:49:00 PM
91%
spectr-dense-6d6
PERFORMANCE
LATENCY
12 ms of 100 ms
RAM
16 kB of 512 kB
ROM
19 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
1000 ms |
Enabled
SPECTRAL-ANALYSIS
16
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 91%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 20 | - | - |
dense | 10 | - | - |
dense | 5 | - | - |
dropout | - | - | 0.25 |
9/17/2023, 4:51:17 PM
90%
spectr-dense-2a6
PERFORMANCE
LATENCY
10 ms of 100 ms
RAM
15 kB of 512 kB
ROM
22 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
2000 ms |
Enabled
SPECTRAL-ANALYSIS
16
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 90%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 40 | - | - |
dense | 20 | - | - |
dense | 10 | - | - |
dropout | - | - | 0.5 |
9/17/2023, 4:49:47 PM
90%
spectr-dense-5ec
PERFORMANCE
LATENCY
10 ms of 100 ms
RAM
15 kB of 512 kB
ROM
22 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
4000 ms |
Enabled
SPECTRAL-ANALYSIS
16
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 90%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 40 | - | - |
dense | 20 | - | - |
dropout | - | - | 0.25 |
9/17/2023, 4:51:29 PM
90%
spectr-dense-e39
PERFORMANCE
LATENCY
12 ms of 100 ms
RAM
16 kB of 512 kB
ROM
19 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT
4000 ms |
1000 ms |
Enabled
SPECTRAL-ANALYSIS
16
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 30 | 90%
Type | Filters | Kernel | Rate |
---|---|---|---|
dense | 20 | - | - |
dense | 10 | - | - |
dense | 5 | - | - |
dropout | - | - | 0.5 |
9/17/2023, 4:50:05 PM
Training output
Hide
Click 'Run EON Tuner' to begin