Edge Impulse Experts / ei-brickml-demo-3d-printing Public
The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.

Target

No name set

Renesas RA6M5 (Cortex-M33 200MHz)

100 ms

512 kB

2048 kB

Filters

Status

DSP type

Model type

View

Data set

Variant

Sort

General

F1-score

Precision

Recall

99%
spectr-dense-cd3
PERFORMANCE
LATENCY
12 ms of 100 ms
RAM
13 kB of 512 kB
ROM
19 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
1000 ms |
Enabled

SPECTRAL-ANALYSIS

64

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 99%

Type Filters Kernel Rate
dense 20 - -
dense 10 - -
dense 5 - -
dropout - - 0.25

9/17/2023, 4:51:49 PM

99%
spectr-dense-750
PERFORMANCE
LATENCY
37 ms of 100 ms
RAM
12 kB of 512 kB
ROM
18 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
1000 ms |
Enabled

SPECTRAL-ANALYSIS

16

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 99%

Type Filters Kernel Rate
dense 40 - -
dense 20 - -
dense 10 - -
dropout - - 0.5

9/17/2023, 4:52:02 PM

99%
spectr-dense-d88
PERFORMANCE
LATENCY
12 ms of 100 ms
RAM
12 kB of 512 kB
ROM
24 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
1000 ms |
Enabled

SPECTRAL-ANALYSIS

64

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 99%

Type Filters Kernel Rate
dense 40 - -
dense 20 - -
dropout - - 0.5

9/17/2023, 4:53:01 PM

98%
spectr-dense-c48
PERFORMANCE
LATENCY
12 ms of 100 ms
RAM
12 kB of 512 kB
ROM
24 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
2000 ms |
Enabled

SPECTRAL-ANALYSIS

64

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 98%

Type Filters Kernel Rate
dense 40 - -
dense 20 - -
dropout - - 0.25

9/17/2023, 4:49:36 PM

97%
spectr-dense-f15
PERFORMANCE
LATENCY
37 ms of 100 ms
RAM
12 kB of 512 kB
ROM
18 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
2000 ms |
Enabled

SPECTRAL-ANALYSIS

16

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 97%

Type Filters Kernel Rate
dense 40 - -
dense 20 - -
dense 10 - -
dropout - - 0.5

9/17/2023, 4:52:33 PM

97%
spectr-dense-b82
PERFORMANCE
LATENCY
12 ms of 100 ms
RAM
13 kB of 512 kB
ROM
24 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
2000 ms |
Enabled

SPECTRAL-ANALYSIS

64

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 97%

Type Filters Kernel Rate
dense 40 - -
dense 20 - -
dense 10 - -
dropout - - 0.25

9/17/2023, 4:50:49 PM

95%
spectr-dense-012
PERFORMANCE
LATENCY
37 ms of 100 ms
RAM
12 kB of 512 kB
ROM
18 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
2000 ms |
Enabled

SPECTRAL-ANALYSIS

16

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 95%

Type Filters Kernel Rate
dense 40 - -
dense 20 - -
dropout - - 0.5

9/17/2023, 4:50:19 PM

95%
spectr-dense-520
PERFORMANCE
LATENCY
11 ms of 100 ms
RAM
15 kB of 512 kB
ROM
22 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
1000 ms |
Enabled

SPECTRAL-ANALYSIS

16

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 95%

Type Filters Kernel Rate
dense 40 - -
dense 20 - -
dense 10 - -
dropout - - 0.5

9/17/2023, 4:52:39 PM

95%
spectr-dense-21e
PERFORMANCE
LATENCY
11 ms of 100 ms
RAM
15 kB of 512 kB
ROM
22 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
1000 ms |
Enabled

SPECTRAL-ANALYSIS

16

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 95%

Type Filters Kernel Rate
dense 40 - -
dense 20 - -
dense 10 - -
dropout - - 0.25

9/17/2023, 4:51:23 PM

95%
spectr-dense-8bf
PERFORMANCE
LATENCY
11 ms of 100 ms
RAM
15 kB of 512 kB
ROM
22 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
1000 ms |
Enabled

SPECTRAL-ANALYSIS

16

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 95%

Type Filters Kernel Rate
dense 40 - -
dense 20 - -
dropout - - 0.25

9/17/2023, 4:50:13 PM

92%
spectr-dense-d35
PERFORMANCE
LATENCY
11 ms of 100 ms
RAM
15 kB of 512 kB
ROM
22 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
2000 ms |
Enabled

SPECTRAL-ANALYSIS

16

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 92%

Type Filters Kernel Rate
dense 40 - -
dense 20 - -
dense 10 - -
dropout - - 0.25

9/17/2023, 4:49:00 PM

91%
spectr-dense-6d6
PERFORMANCE
LATENCY
12 ms of 100 ms
RAM
16 kB of 512 kB
ROM
19 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
1000 ms |
Enabled

SPECTRAL-ANALYSIS

16

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 91%

Type Filters Kernel Rate
dense 20 - -
dense 10 - -
dense 5 - -
dropout - - 0.25

9/17/2023, 4:51:17 PM

90%
spectr-dense-2a6
PERFORMANCE
LATENCY
10 ms of 100 ms
RAM
15 kB of 512 kB
ROM
22 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
2000 ms |
Enabled

SPECTRAL-ANALYSIS

16

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 90%

Type Filters Kernel Rate
dense 40 - -
dense 20 - -
dense 10 - -
dropout - - 0.5

9/17/2023, 4:49:47 PM

90%
spectr-dense-5ec
PERFORMANCE
LATENCY
10 ms of 100 ms
RAM
15 kB of 512 kB
ROM
22 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

SPECTRAL-ANALYSIS

16

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 90%

Type Filters Kernel Rate
dense 40 - -
dense 20 - -
dropout - - 0.25

9/17/2023, 4:51:29 PM

90%
spectr-dense-e39
PERFORMANCE
LATENCY
12 ms of 100 ms
RAM
16 kB of 512 kB
ROM
19 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
1000 ms |
Enabled

SPECTRAL-ANALYSIS

16

ACCURACY (KERAS)
CLASSIFICATION

0.0005 | 30 | 90%

Type Filters Kernel Rate
dense 20 - -
dense 10 - -
dense 5 - -
dropout - - 0.5

9/17/2023, 4:50:05 PM