Edge Impulse Experts / Adiuvo_BrainChip_KeyWord Public

Training settings

Please provide a valid number of training cycles (numeric only)
Please provide a valid number for the learning rate (between 0 and 1)
Please provide a valid training processor option

Augmentation settings

Advanced training settings

Audio training options

Neural network architecture

import tensorflow as tf
from tensorflow.keras.models import Sequential
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Input layer (650 features)
2D conv / pool layer (64 filters, 5 kernel size, 1 layer)
2D conv / pool layer (64 filters, 3 kernel size, 1 layer)
2D conv / pool layer (64 filters, 3 kernel size, 1 layer)
2D conv / pool layer (64 filters, 3 kernel size, 1 layer)
Reshape layer (1 columns)
Dense layer (33 neurons)
Output layer (4 classes)