The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.
Target
No name set
Arduino Nicla Vision (Cortex-M7 480MHz)
100 ms
1024 kB
2048 kB
Filters
Status
DSP type
Model type
View
Data set
Variant
Sort
General
F1-score
Precision
Recall
rgb-mobilenetv2-1c4
PERFORMANCE
LATENCY
100 ms
RAM
1024 kB
ROM
2048 kB
Unused
IMAGE INPUT
160 |
160
IMAGE
RGB
ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)
0.0005 | 20
MobileNetV2 0.05
64 | 0.5 |
rgb-mobilenetv1-f61
PERFORMANCE
LATENCY
100 ms
RAM
1024 kB
ROM
2048 kB
Unused
IMAGE INPUT
160 |
160
IMAGE
RGB
ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)
0.0005 | 20
MobileNetV1 0.2
64 | 0.5 |
rgb-conv2d-71b
PERFORMANCE
LATENCY
100 ms
RAM
1024 kB
ROM
2048 kB
Unused
IMAGE INPUT
32 |
32
IMAGE
RGB
ACCURACY (KERAS)
Confusion matrices are not available for this model
CLASSIFICATION
0.0005 | 10
Type | Filters | Kernel | Rate |
---|---|---|---|
conv2d | 16 | 3 | - |
conv2d | 32 | 3 | - |
conv2d | 64 | 3 | - |
dropout | - | - | 0.5 |
rgb-conv2d-2a0
PERFORMANCE
LATENCY
100 ms
RAM
1024 kB
ROM
2048 kB
Unused
IMAGE INPUT
32 |
32
IMAGE
RGB
ACCURACY (KERAS)
Confusion matrices are not available for this model
CLASSIFICATION
0.0005 | 10
Type | Filters | Kernel | Rate |
---|---|---|---|
conv2d | 16 | 3 | - |
conv2d | 32 | 3 | - |
conv2d | 64 | 3 | - |
conv2d | 128 | 3 | - |
dropout | - | - | 0.5 |
rgb-mobilenetv2-300
PERFORMANCE
LATENCY
100 ms
RAM
1024 kB
ROM
2048 kB
Unused
IMAGE INPUT
160 |
160
IMAGE
RGB
ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)
0.0005 | 20
MobileNetV2 0.05
64 | 0.1
grayscale-mobilenetv2-d47
PERFORMANCE
LATENCY
100 ms
RAM
1024 kB
ROM
2048 kB
Unused
IMAGE INPUT
160 |
160
IMAGE
Grayscale
ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)
0.0005 | 20
MobileNetV2 0.1
64 | 0.1
rgb-mobilenetv2-a8d
PERFORMANCE
LATENCY
100 ms
RAM
1024 kB
ROM
2048 kB
Unused
IMAGE INPUT
96 |
96
IMAGE
RGB
ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)
0.0005 | 20
MobileNetV2 160x160 0.5
64 | 0.1
grayscale-conv2d-216
PERFORMANCE
LATENCY
100 ms
RAM
1024 kB
ROM
2048 kB
Unused
IMAGE INPUT
64 |
64
IMAGE
Grayscale
ACCURACY (KERAS)
Confusion matrices are not available for this model
CLASSIFICATION
0.0005 | 10
Type | Filters | Kernel | Rate |
---|---|---|---|
conv2d | 8 | 3 | - |
conv2d | 16 | 3 | - |
conv2d | 32 | 3 | - |
conv2d | 64 | 3 | - |
dropout | - | - | 0.5 |
rgb-mobilenetv1-a1a
PERFORMANCE
LATENCY
100 ms
RAM
1024 kB
ROM
2048 kB
Unused
IMAGE INPUT
160 |
160
IMAGE
RGB
ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)
0.0005 | 20
MobileNetV1 0.25
16 | 0.1 |
rgb-mobilenetv1-1cd
PERFORMANCE
LATENCY
100 ms
RAM
1024 kB
ROM
2048 kB
Unused
IMAGE INPUT
160 |
160
IMAGE
RGB
ACCURACY (KERAS-TRANSFER-IMAGE)
Confusion matrices are not available for this model
TRANSFER LEARNING (IMAGES)
0.0005 | 20
MobileNetV1 0.25
16 | 0.5 |
Training output
Hide
Click 'Run EON Tuner' to begin