Sai Yamanoor / Audio_Pico_Badge Public
The EON Tuner helps you quickly run hyper-parameter sweeps that explore different pre-processing + model architectures optimized for your defined objectives. Clone this project to use the EON Tuner.

Target

No name set

Raspberry Pi RP2040 (Cortex-M0+ 133MHz)

100 ms

264 kB

2048 kB

Filters

Status

DSP type

Model type

View

Data set

Variant

Sort

General

F1-score

Precision

Recall

100%
mfe-conv1d-5ea
PERFORMANCE
LATENCY
1195 ms of 100 ms
Exceeds target by 1095 ms
RAM
30 kB of 264 kB
ROM
30 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 100%

Type Filters Kernel Rate
conv1d 8 3 -
conv1d 16 3 -
dropout - - 0.25

1/25/2023, 4:15:59 PM

100%
mfe-conv1d-a44
PERFORMANCE
LATENCY
1265 ms of 100 ms
Exceeds target by 1165 ms
RAM
32 kB of 264 kB
ROM
41 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 100%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.25

1/25/2023, 4:16:25 PM

100%
mfe-conv1d-752
PERFORMANCE
LATENCY
1227 ms of 100 ms
Exceeds target by 1127 ms
RAM
30 kB of 264 kB
ROM
33 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 100%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

1/25/2023, 4:16:13 PM

100%
mfe-conv1d-bc2
PERFORMANCE
LATENCY
2383 ms of 100 ms
Exceeds target by 2283 ms
RAM
47 kB of 264 kB
ROM
34 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

MFE

0.05 | 0.025 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 100%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.25

1/25/2023, 4:16:52 PM

100%
mfe-conv1d-917
PERFORMANCE
LATENCY
950 ms of 100 ms
Exceeds target by 850 ms
RAM
28 kB of 264 kB
ROM
41 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 100%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

1/25/2023, 4:18:00 PM

100%
mfe-conv1d-90f
PERFORMANCE
LATENCY
2364 ms of 100 ms
Exceeds target by 2264 ms
RAM
45 kB of 264 kB
ROM
31 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

MFE

0.05 | 0.025 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 100%

Type Filters Kernel Rate
conv1d 8 3 -
conv1d 16 3 -
dropout - - 0.5

1/25/2023, 4:18:02 PM

100%
mfe-conv1d-7e0
PERFORMANCE
LATENCY
1016 ms of 100 ms
Exceeds target by 916 ms
RAM
31 kB of 264 kB
ROM
68 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 100%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.5

1/25/2023, 4:19:34 PM

99%
mfe-conv1d-f9a
PERFORMANCE
LATENCY
1094 ms of 100 ms
Exceeds target by 994 ms
RAM
30 kB of 264 kB
ROM
68 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 99%

Type Filters Kernel Rate
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.5

1/25/2023, 4:17:44 PM

99%
mfe-conv2d-1a7
PERFORMANCE
LATENCY
1722 ms of 100 ms
Exceeds target by 1622 ms
RAM
50 kB of 264 kB
ROM
38 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 99%

Type Filters Kernel Rate
conv2d 8 3 -
conv2d 16 3 -
conv2d 32 3 -
dropout - - 0.5

1/25/2023, 4:21:24 PM

99%
mfe-conv1d-508
PERFORMANCE
LATENCY
1987 ms of 100 ms
Exceeds target by 1887 ms
RAM
42 kB of 264 kB
ROM
69 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

MFE

0.05 | 0.025 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 99%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.5

1/25/2023, 4:19:56 PM

99%
mfe-conv1d-ef5
PERFORMANCE
LATENCY
914 ms of 100 ms
Exceeds target by 814 ms
RAM
30 kB of 264 kB
ROM
40 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 99%

Type Filters Kernel Rate
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

1/25/2023, 4:15:52 PM

99%
mfe-conv1d-923
PERFORMANCE
LATENCY
1227 ms of 100 ms
Exceeds target by 1127 ms
RAM
30 kB of 264 kB
ROM
33 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 99%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

1/25/2023, 4:17:55 PM

99%
mfe-conv1d-188
PERFORMANCE
LATENCY
1821 ms of 100 ms
Exceeds target by 1721 ms
RAM
38 kB of 264 kB
ROM
34 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

3000 ms |
3000 ms |
Enabled

MFE

0.05 | 0.025 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 99%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

1/25/2023, 4:18:23 PM

99%
mfe-conv1d-9fd
PERFORMANCE
LATENCY
1265 ms of 100 ms
Exceeds target by 1165 ms
RAM
32 kB of 264 kB
ROM
41 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 99%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

1/25/2023, 4:19:54 PM

99%
mfe-conv1d-5b3
PERFORMANCE
LATENCY
1602 ms of 100 ms
Exceeds target by 1502 ms
RAM
37 kB of 264 kB
ROM
31 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
4000 ms |
Enabled

MFE

0.032 | 0.032 | 32

ACCURACY (KERAS)
CLASSIFICATION

0.005 | 100 | 99%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
dropout - - 0.25

1/25/2023, 4:19:38 PM