The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.
Target
No name set
Cortex-M7 216MHz
100 ms
340 kB
1024 kB
Filters
Status
DSP type
Model type
View
Data set
Variant
Sort
General
F1-score
Precision
Recall
mfe-conv1d-d25
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFE
0.02 | 0.01 | 32
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
conv1d | 16 | 3 | - |
conv1d | 32 | 3 | - |
conv1d | 64 | 3 | - |
conv1d | 128 | 3 | - |
dropout | - | - | 0.25 |
mfcc-conv2d-14f
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFCC
0.032 | 0.016 | 40
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
Data augmentation | |||
conv2d | 16 | 3 | - |
conv2d | 32 | 3 | - |
dropout | - | - | 0.25 |
mfe-conv1d-743
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFE
0.02 | 0.01 | 32
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
Data augmentation | |||
conv1d | 16 | 3 | - |
conv1d | 32 | 3 | - |
conv1d | 64 | 3 | - |
dropout | - | - | 0.25 |
mfe-mobilenetv1-5e5
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
500 ms |
Enabled
MFE
0.02 | 0.01 | 40
ACCURACY (KERAS-TRANSFER-KWS)
TRANSFER LEARNING (KEYWORD SPOTTING)
0.01 | 30
MobileNetV1 0.1
128 | 0.1
mfe-conv2d-570
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFE
0.032 | 0.016 | 32
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
Data augmentation | |||
conv2d | 8 | 3 | - |
conv2d | 16 | 3 | - |
conv2d | 32 | 3 | - |
conv2d | 64 | 3 | - |
dropout | - | - | 0.25 |
mfcc-conv2d-268
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFCC
0.032 | 0.032 | 32
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
Data augmentation | |||
conv2d | 32 | 3 | - |
conv2d | 64 | 3 | - |
dropout | - | - | 0.25 |
mfcc-conv2d-7b5
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFCC
0.02 | 0.02 | 32
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
conv2d | 16 | 3 | - |
conv2d | 32 | 3 | - |
dropout | - | - | 0.25 |
mfcc-conv1d-d3e
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFCC
0.02 | 0.02 | 40
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
conv1d | 32 | 3 | - |
conv1d | 64 | 3 | - |
conv1d | 128 | 3 | - |
conv1d | 256 | 3 | - |
dropout | - | - | 0.5 |
mfe-conv1d-fb8
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFE
0.02 | 0.01 | 32
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
Data augmentation | |||
conv1d | 16 | 3 | - |
conv1d | 32 | 3 | - |
dropout | - | - | 0.5 |
mfe-conv1d-41e
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFE
0.02 | 0.01 | 32
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
conv1d | 32 | 3 | - |
conv1d | 64 | 3 | - |
dropout | - | - | 0.25 |
mfcc-conv2d-b96
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFCC
0.032 | 0.032 | 32
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
conv2d | 16 | 3 | - |
conv2d | 32 | 3 | - |
conv2d | 64 | 3 | - |
conv2d | 128 | 3 | - |
dropout | - | - | 0.5 |
mfcc-conv2d-a5b
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFCC
0.032 | 0.016 | 40
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
Data augmentation | |||
conv2d | 8 | 3 | - |
conv2d | 16 | 3 | - |
conv2d | 32 | 3 | - |
conv2d | 64 | 3 | - |
dropout | - | - | 0.5 |
mfcc-conv2d-cc0
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFCC
0.05 | 0.025 | 32
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
conv2d | 16 | 3 | - |
conv2d | 32 | 3 | - |
conv2d | 64 | 3 | - |
conv2d | 128 | 3 | - |
dropout | - | - | 0.25 |
mfe-conv2d-fe4
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFE
0.05 | 0.05 | 32
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
conv2d | 32 | 3 | - |
conv2d | 64 | 3 | - |
dropout | - | - | 0.5 |
mfe-conv1d-043
PERFORMANCE
LATENCY
100 ms
RAM
340 kB
ROM
1024 kB
Unused
TIME-SERIES INPUT
1000 ms |
1000 ms |
Enabled
MFE
0.02 | 0.01 | 32
ACCURACY (KERAS)
CLASSIFICATION
0.005 | 100
Type | Filters | Kernel | Rate |
---|---|---|---|
Data augmentation | |||
conv1d | 32 | 3 | - |
conv1d | 64 | 3 | - |
conv1d | 128 | 3 | - |
dropout | - | - | 0.25 |
Training output
Hide
Click 'Run EON Tuner' to begin