The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.
Target
No name set
Nvidia Jetson Nano
100 ms
4194304 kB
16777216 kB
Filters
Status
DSP type
Model type
View
Data set
Variant
Sort
General
F1-score
Precision
Recall
PERFORMANCE
LATENCY
6 ms of
100 ms
RAM
89 kB of
4194304 kB
ROM
405 kB of
16777216 kB
DSP
NN
Unused
IMAGE INPUT
32
|
32
IMAGE
RGB
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 10 | 65%
Type | Filters | Kernel | Rate |
---|---|---|---|
conv2d | 16 | 3 | - |
conv2d | 32 | 3 | - |
conv2d | 64 | 3 | - |
conv2d | 128 | 3 | - |
dropout | - | - | 0.25 |
12/22/2022, 4:06:24 PM
PERFORMANCE
LATENCY
8 ms of
100 ms
RAM
184 kB of
4194304 kB
ROM
126 kB of
16777216 kB
DSP
NN
Unused
IMAGE INPUT
64
|
64
IMAGE
RGB
ACCURACY (KERAS)
CLASSIFICATION
0.0005 | 10 | 53%
Type | Filters | Kernel | Rate |
---|---|---|---|
conv2d | 8 | 3 | - |
conv2d | 16 | 3 | - |
conv2d | 32 | 3 | - |
conv2d | 64 | 3 | - |
dropout | - | - | 0.25 |
12/22/2022, 4:01:06 PM
Training output
Hide
Click 'Run EON Tuner' to begin