Naveen / Running_Faucet_Blues_Wireless Public
The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.

Target

No name set

Arduino Nano 33 BLE Sense (Cortex-M4F 64MHz)

100 ms

256 kB

1024 kB

Filters

Status

DSP type

Model type

View

Data set

Variant

Sort

General

F1-score

Precision

Recall

92%
mfe-conv1d-a59
PERFORMANCE
LATENCY
266 ms of 100 ms
Exceeds target by 166 ms
RAM
26 kB of 256 kB
ROM
68 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.025 | 32

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 92%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.25

10/27/2022, 3:09:21 AM

91%
mfe-conv1d-de4
PERFORMANCE
LATENCY
265 ms of 100 ms
Exceeds target by 165 ms
RAM
26 kB of 256 kB
ROM
68 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

2000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 91%

Type Filters Kernel Rate
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.25

10/27/2022, 3:11:26 AM

91%
mfe-conv1d-a80
PERFORMANCE
LATENCY
353 ms of 100 ms
Exceeds target by 253 ms
RAM
30 kB of 256 kB
ROM
34 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

2000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.025 | 32

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 91%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

10/27/2022, 3:08:12 AM

90%
mfe-conv1d-428
PERFORMANCE
LATENCY
416 ms of 100 ms
Exceeds target by 316 ms
RAM
30 kB of 256 kB
ROM
34 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

4000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 90%

Type Filters Kernel Rate
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

10/27/2022, 2:47:44 AM

89%
spectr-conv2d-c34
PERFORMANCE
LATENCY
2082 ms of 100 ms
Exceeds target by 1982 ms
RAM
31 kB of 256 kB
ROM
34 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
500 ms |
Enabled

SPECTROGRAM

0.075 | 0.0375 | -52

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 89%

Type Filters Kernel Rate
conv2d 8 3 -
conv2d 16 3 -
dropout - - 0.25

10/27/2022, 3:01:13 AM

88%
spectr-conv1d-d6b
PERFORMANCE
LATENCY
188 ms of 100 ms
Exceeds target by 88 ms
RAM
35 kB of 256 kB
ROM
70 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

2000 ms |
500 ms |
Enabled

SPECTROGRAM

0.075 | 0.0375 | -52

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 88%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.25

10/27/2022, 3:11:30 AM

88%
spectr-conv1d-bc7
PERFORMANCE
LATENCY
194 ms of 100 ms
Exceeds target by 94 ms
RAM
41 kB of 256 kB
ROM
42 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
500 ms |
Enabled

SPECTROGRAM

0.025 | 0.0125 | -52

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 88%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

10/27/2022, 3:04:41 AM

88%
mfe-conv1d-207
PERFORMANCE
LATENCY
139 ms of 100 ms
Exceeds target by 39 ms
RAM
19 kB of 256 kB
ROM
41 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
250 ms |
Enabled

MFE

0.032 | 0.032 | 32

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 88%

Type Filters Kernel Rate
Data augmentation
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.25

10/27/2022, 2:55:53 AM

88%
mfe-conv1d-165
PERFORMANCE
LATENCY
183 ms of 100 ms
Exceeds target by 83 ms
RAM
25 kB of 256 kB
ROM
68 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.025 | 32

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 88%

Type Filters Kernel Rate
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.25

10/27/2022, 3:09:04 AM

87%
spectr-conv1d-ebf
PERFORMANCE
LATENCY
212 ms of 100 ms
Exceeds target by 112 ms
RAM
38 kB of 256 kB
ROM
36 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

2000 ms |
500 ms |
Enabled

SPECTROGRAM

0.025 | 0.025 | -72

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 87%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.5

10/27/2022, 3:14:32 AM

87%
spectr-conv1d-196
PERFORMANCE
LATENCY
161 ms of 100 ms
Exceeds target by 61 ms
RAM
38 kB of 256 kB
ROM
36 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
500 ms |
Enabled

SPECTROGRAM

0.025 | 0.0125 | -72

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 87%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.25

10/27/2022, 3:12:23 AM

86%
spectr-conv1d-12c
PERFORMANCE
LATENCY
71 ms of 100 ms
RAM
27 kB of 256 kB
ROM
70 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
500 ms |
Enabled

SPECTROGRAM

0.025 | 0.025 | -72

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 86%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.25

10/27/2022, 2:52:55 AM

86%
spectr-conv1d-548
PERFORMANCE
LATENCY
203 ms of 100 ms
Exceeds target by 103 ms
RAM
40 kB of 256 kB
ROM
43 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

SPECTROGRAM

0.025 | 0.0125 | -52

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 86%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

10/27/2022, 2:59:33 AM

85%
spectr-conv1d-283
PERFORMANCE
LATENCY
138 ms of 100 ms
Exceeds target by 38 ms
RAM
20 kB of 256 kB
ROM
69 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

SPECTROGRAM

0.075 | 0.075 | -72

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 85%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.5

10/27/2022, 3:01:58 AM

83%
mfe-conv2d-f6f
PERFORMANCE
LATENCY
9388 ms of 100 ms
Exceeds target by 9288 ms
RAM
297 kB of 256 kB
Exceeds target by 41 kB
ROM
32 kB of 1024 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.032 | 0.032 | 32

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 83%

Type Filters Kernel Rate
conv2d 8 3 -
conv2d 16 3 -
dropout - - 0.25

10/27/2022, 3:07:17 AM