Edge Impulse Experts / new-pico-voice Public
The EON Tuner helps you find the most optimal architecture for your embedded machine-learning application. Clone this project to use the EON Tuner.

Target

No name set

Raspberry Pi RP2040 (Cortex-M0+ 133MHz)

100 ms

264 kB

2048 kB

Filters

Status

DSP type

Model type

View

Data set

Variant

Sort

General

F1-score

Precision

Recall

87%
mfe-conv1d-8bc
PERFORMANCE
LATENCY
434 ms of 100 ms
Exceeds target by 334 ms
RAM
23 kB of 264 kB
ROM
38 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.025 | 40

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 87%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.25

7/20/2022, 3:38:03 PM

83%
mfe-conv1d-d6a
PERFORMANCE
LATENCY
347 ms of 100 ms
Exceeds target by 247 ms
RAM
22 kB of 264 kB
ROM
73 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.05 | 40

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 83%

Type Filters Kernel Rate
Data augmentation
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
conv1d 128 3 -
dropout - - 0.5

7/20/2022, 4:02:19 PM

81%
mfe-conv1d-c1a
PERFORMANCE
LATENCY
309 ms of 100 ms
Exceeds target by 209 ms
RAM
22 kB of 264 kB
ROM
46 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.032 | 0.032 | 40

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 81%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.25

7/20/2022, 3:56:29 PM

72%
mfe-conv1d-e87
PERFORMANCE
LATENCY
427 ms of 100 ms
Exceeds target by 327 ms
RAM
23 kB of 264 kB
ROM
38 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.025 | 40

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 72%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
dropout - - 0.25

7/20/2022, 3:48:32 PM

67%
mfcc-conv1d-570
PERFORMANCE
LATENCY
756 ms of 100 ms
Exceeds target by 656 ms
RAM
22 kB of 264 kB
ROM
45 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.025 | 32

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 67%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

7/20/2022, 3:58:31 PM

67%
mfe-conv1d-c08
PERFORMANCE
LATENCY
416 ms of 100 ms
Exceeds target by 316 ms
RAM
22 kB of 264 kB
ROM
35 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.025 | 40

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 67%

Type Filters Kernel Rate
conv1d 8 3 -
conv1d 16 3 -
dropout - - 0.25

7/20/2022, 4:05:47 PM

62%
mfe-conv1d-204
PERFORMANCE
LATENCY
393 ms of 100 ms
Exceeds target by 293 ms
RAM
23 kB of 264 kB
ROM
46 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.032 | 0.032 | 40

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 62%

Type Filters Kernel Rate
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.25

7/20/2022, 4:07:30 PM

59%
mfcc-conv1d-275
PERFORMANCE
LATENCY
764 ms of 100 ms
Exceeds target by 664 ms
RAM
22 kB of 264 kB
ROM
45 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.025 | 32

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 59%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.25

7/20/2022, 3:39:38 PM

58%
mfcc-conv1d-f4e
PERFORMANCE
LATENCY
815 ms of 100 ms
Exceeds target by 715 ms
RAM
22 kB of 264 kB
ROM
45 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.032 | 0.032 | 40

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 58%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

7/20/2022, 3:39:01 PM

58%
mfcc-conv1d-883
PERFORMANCE
LATENCY
815 ms of 100 ms
Exceeds target by 715 ms
RAM
22 kB of 264 kB
ROM
45 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.032 | 0.032 | 40

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 58%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.5

7/20/2022, 3:39:49 PM

58%
mfcc-conv2d-e42
PERFORMANCE
LATENCY
428 ms of 100 ms
Exceeds target by 328 ms
RAM
20 kB of 264 kB
ROM
60 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 58%

Type Filters Kernel Rate
conv2d 8 3 -
conv2d 16 3 -
conv2d 32 3 -
conv2d 64 3 -
dropout - - 0.5

7/20/2022, 3:50:24 PM

53%
mfcc-conv2d-a2e
PERFORMANCE
LATENCY
440 ms of 100 ms
Exceeds target by 340 ms
RAM
18 kB of 264 kB
ROM
40 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.05 | 32

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 53%

Type Filters Kernel Rate
Data augmentation
conv2d 8 3 -
conv2d 16 3 -
conv2d 32 3 -
dropout - - 0.5

7/20/2022, 3:38:52 PM

53%
mfcc-conv1d-bba
PERFORMANCE
LATENCY
1012 ms of 100 ms
Exceeds target by 912 ms
RAM
24 kB of 264 kB
ROM
45 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.05 | 0.025 | 40

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 53%

Type Filters Kernel Rate
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.25

7/20/2022, 3:41:47 PM

53%
mfcc-conv1d-feb
PERFORMANCE
LATENCY
599 ms of 100 ms
Exceeds target by 499 ms
RAM
21 kB of 264 kB
ROM
45 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFCC

0.032 | 0.032 | 32

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 53%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
conv1d 32 3 -
conv1d 64 3 -
dropout - - 0.25

7/20/2022, 3:43:56 PM

51%
mfe-conv1d-014
PERFORMANCE
LATENCY
416 ms of 100 ms
Exceeds target by 316 ms
RAM
22 kB of 264 kB
ROM
35 kB of 2048 kB
DSP NN Unused
TIME-SERIES INPUT

1000 ms |
1000 ms |
Enabled

MFE

0.05 | 0.025 | 40

ACCURACY (KERAS)
CLASSIFICATION (KERAS)

0.005 | 100 | 51%

Type Filters Kernel Rate
Data augmentation
conv1d 8 3 -
conv1d 16 3 -
dropout - - 0.25

7/20/2022, 3:52:30 PM