Rodolfo Cossovich / gesto-umi Public

Training settings

Please provide a valid number of training cycles (numeric only)
Please provide a valid number for the learning rate (between 0 and 1)
Please provide a valid training processor option

Augmentation settings

Advanced training settings

Neural network architecture

import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, InputLayer, Dropout, Flatten # Standard Edge Impulse arguments from tensorflow.keras.optimizers.legacy import Adam # 1. FIXED: Set a realistic learning rate (0.000005 was too low) EPOCHS = args.epochs or 75 LEARNING_RATE = args.learning_rate or 0.00001 ENSURE_DETERMINISM = args.ensure_determinism BATCH_SIZE = args.batch_size or 32 if not ENSURE_DETERMINISM: train_dataset = train_dataset.shuffle(buffer_size=BATCH_SIZE*4) train_dataset = train_dataset.batch(BATCH_SIZE, drop_remainder=False) validation_dataset = validation_dataset.batch(BATCH_SIZE, drop_remainder=False) # model architecture model = Sequential() # 2. FIXED: Added the required Input Layer model.add(InputLayer(input_shape=(input_length, ), name='x_input')) # 3. FIXED: Added 'model.add', increased neurons slightly to 16, kept your L2 model.add(Dense(32, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(0.01))) # Dropout to prevent overfitting model.add(Dropout(0.4)) # Second layer (Optional: For 30 samples, 2 layers might be too much, but you can try) model.add(Dense(8, activation='relu')) # Output layer model.add(Dense(classes, name='y_pred', activation='softmax')) # Optimizer setup opt = Adam(learning_rate=LEARNING_RATE, beta_1=0.9, beta_2=0.999) callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count, epochs=EPOCHS, ensure_determinism=ENSURE_DETERMINISM)) # train the neural network model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) model.fit(train_dataset, epochs=EPOCHS, validation_data=validation_dataset, verbose=2, callbacks=callbacks) disable_per_channel_quantization = False
Input layer (1,056 features)
Dense layer (8 neurons)
Dropout (rate 0.25)
Output layer (3 classes)

Model

Model version: