Edge Impulse Experts / AI-driven Plastic Surface Defect Detection via UV-exposure Public

AI-driven Plastic Surface Defect Detection via UV-exposure

Images

About this project

This FOMO-AD visual anomaly detection model is trained on an extensive UV-applied plastic surface image dataset, showcasing various plastic material types and surface defect stages (none, high, and extreme).

While labeling the UV-applied plastic surface image samples, I needed to utilize the default classes required by Edge Impulse to enable the F1 score calculation:

  • no anomaly
  • anomaly

After training and validating, I deployed my FOMO-AD model as an EIM binary for Linux (AARCH64) compatible with Raspberry Pi 5.

The project GitHub repository provides:

  • The extensive UV-applied plastic surface image dataset
  • Code files
  • PCB manufacturing files
  • Mechanical part and component design files (STL)
  • Edge Impulse FOMO-AD visual anomaly detection model (EIM binary for Linux AARCH64)

materials_2.jpg

device_data_collect_81_3cm_275nm_uv_bandpass.jpg

data_collection_rasp_pi_preview_25.png

data_collection_rasp_pi_preview_64.png

data_collection_rasp_pi_preview_97.png

model_design_2_overview.png

assembly_113_camera_filter_lens_mounts.jpg

assembly_118_camera_filter_lens_mounts.jpg

assembly_149_final_overview.jpg

assembly_155_final_overview_dark.jpg

assembly_160_conveyor_running_hall_sensor.jpg

assembly_161_conveyor_running_noir_w_high_gel.jpg

assembly_163_conveyor_running_uv_sources.jpg

assembly_165_conveyor_running_uv_sources.jpg

assembly_170_conveyor_running_uv_sources.jpg

rasp_pi_data_collect_4.png

conveyor_running_1_homescreen.jpg

conveyor_running_10_check.jpg

conveyor_running_19_activated.jpg

conveyor_running_20_activated_enabled.jpg

rasp_pi_func_6_run_model.png

web_dashboard_run_1.png

web_dashboard_run_4_conveyor.png

web_dashboard_run_6_conveyor.png

web_dashboard_run_7_conveyor.png

web_dashboard_run_8_activate_twilio.png

twilio_run_message_3.jpg

twilio_run_message_4.jpg

anomaly_regular_1__2025_11_19_12_43_12.jpg

3cm_395nm_matte_khaki_uv_bandpass_none_24
3cm_275nm_matte_khaki_uv_bandpass_none_23
3cm_365nm_shiny_white_gel_low_tr_none_2
5cm_365nm_fluorescent_blue_uv_bandpass_none_8
5cm_365nm_fluorescent_green_gel_high_tr_none_21
3cm_395nm_fluorescent_blue_gel_medium_tr_none_28
5cm_365nm_fluorescent_blue_gel_high_tr_none_14
5cm_275nm_matte_white_gel_low_tr_none_13

Run this model

On any device

Dataset summary

Data collected
6,959 items
Labels
no anomaly

Project info

Project ID 800518
License 3-Clause BSD
No. of views 2,373
No. of clones 0