Edge Impulse Experts / LoRa & LLM-enabled Drive-through Kiosk Vehicle Detection Public

LoRa & LLM-enabled Drive-through Kiosk Vehicle Detection

Object detection

About this project

This FOMO (Faster Objects, More Objects) object detection model is trained on various car replica (vehicle) images to authorize customer accounts on the restaurant web application via vehicle detection (opt-in).

While labeling the vehicle image samples, I simply applied the unique account authentication keys produced by the restaurant web application:

  • a1dd
  • a2f9
  • a4c7
  • a9f1

After training and validating, I deployed my FOMO model as an Arduino library compatible with the onboard RP2040 of RA-08H LoRaWAN node board.

The project GitHub repository provides:

  • Drive-restaurant web application
  • Kiosk customer endpoint code files
  • Food delivery system code files
  • Endpoint PCB manufacturing files (Gerber)
  • Delivery system Flex PCB manufacturing files (Gerber)
  • 3D part and component design files (STL)
  • Edge Impulse FOMO object detection models (Arduino library)

model_design_fusion_6.png

part_assembly_19_vehicle_platform.jpg

features_endpoint_22_add_vehicle.jpg

features_endpoint_31_validate_vehicle.jpg

features_endpoint_34_validate_vehicle.jpg

features_endpoint_35_validate_vehicle.jpg

a1dd__12
a4c7__14
a1dd__14
a9f1__16
a9f1__15
a2f9__12
a4c7__18
a9f1__8

Run this model

Scan QR code or launch in browser

Dataset summary

Data collected
80 items
Labels
a1dd, a2f9, a4c7, a9f1

Project info

Project ID 734202
Project version 1
License 3-Clause BSD
No. of views 83
No. of clones 0