Edge Impulse Experts / LoRa & LLM-enabled Drive-through Kiosk AptilTag Detection Public

LoRa & LLM-enabled Drive-through Kiosk AptilTag Detection

Object detection

About this project

This FOMO (Faster Objects, More Objects) object detection model is trained on unique AprilTag sign images to identify food prep stations while running the automatic web-enabled food delivery system.

While labeling the AprilTag sign image samples, I simply applied the food prep station numbers to which they are assigned:

  • station_1
  • station_2
  • station_3
  • station_4
  • station_5
  • station_6

After training and validating, I deployed my FOMO model as an Arduino library compatible with Arduino Nicla Vision.

The project GitHub repository provides:

  • Drive-restaurant web application
  • Kiosk customer endpoint code files
  • Food delivery system code files
  • Endpoint PCB manufacturing files (Gerber)
  • Delivery system Flex PCB manufacturing files (Gerber)
  • 3D part and component design files (STL)
  • Edge Impulse FOMO object detection models (Arduino library)

model_design_fusion_3.png

overall_final_setup_25.jpg

features_delivery_system_8_collect_img.jpg

station_tag_img_2025_06_29_11_42_45
station_tag_img_2025_06_29_11_48_35
station_tag_img_2025_06_29_12_05_59
station_tag_img_2025_06_29_11_57_26
station_tag_img_2025_06_29_12_05_49
station_tag_img_2025_06_29_12_04_26
station_tag_img_2025_06_29_11_57_38
station_tag_img_2025_06_29_11_58_26

Run this model

Scan QR code or launch in browser

Dataset summary

Data collected
120 items
Labels
station_1, station_2, station_3, station_4, station_5, station_6

Project info

Project ID 733889
Project version 1
License 3-Clause BSD
No. of views 228
No. of clones 0