Medical Laboratories inc. / DaLIA-PPG S1_E4 - Heart Rate and Variability Estimation with Multilabel Data and Regression Block Public

Training settings

Please provide a valid number of training cycles (numeric only)
Please provide a valid number for the learning rate (between 0 and 1)
Please provide a valid training processor option

Augmentation settings

Advanced training settings

Neural network architecture

import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, InputLayer, Dropout, Conv1D, Conv2D, Flatten, Reshape, MaxPooling1D, MaxPooling2D, AveragePooling2D, BatchNormalization, Permute, ReLU, Softmax from tensorflow.keras.optimizers.legacy import Adam EPOCHS = args.epochs or 500 LEARNING_RATE = args.learning_rate or 0.02 # If True, non-deterministic functions (e.g. shuffling batches) are not used. # This is False by default. ENSURE_DETERMINISM = args.ensure_determinism # this controls the batch size, or you can manipulate the tf.data.Dataset objects yourself BATCH_SIZE = args.batch_size or 32 if not ENSURE_DETERMINISM: train_dataset = train_dataset.shuffle(buffer_size=BATCH_SIZE*4) train_dataset=train_dataset.batch(BATCH_SIZE, drop_remainder=False) validation_dataset = validation_dataset.batch(BATCH_SIZE, drop_remainder=False) # model architecture model = Sequential() model.add(Reshape((int(input_length / 30), 30), input_shape=(input_length, ))) model.add(Conv1D(8, kernel_size=3, padding='same', activation='relu')) model.add(MaxPooling1D(pool_size=2, strides=2, padding='same')) # For optimal compatibility, Dense layers are sometimes expressed as # mathematically equivalent convolutional layers. model.add(Conv1D(64, 1, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(20, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(10, activation='relu')) model.add(Dropout(0.3)) model.add(Dense(classes, name='y_pred')) # this controls the learning rate opt = Adam(learning_rate=LEARNING_RATE, beta_1=0.9, beta_2=0.999) callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count, epochs=EPOCHS, ensure_determinism=ENSURE_DETERMINISM)) # train the neural network model.compile(loss='mean_squared_error', optimizer=opt, metrics=None) model.fit(train_dataset, epochs=EPOCHS, validation_data=validation_dataset, verbose=2, callbacks=callbacks) # Use this flag to disable per-channel quantization for a model. # This can reduce RAM usage for convolutional models, but may have # an impact on accuracy. disable_per_channel_quantization = True
Input layer (30 features)
Reshape layer (30 columns)
1D conv / pool layer (8 filters, 3 kernel size, 1 layer)
Dense layer (64 neurons)
Dropout (rate 0.3)
Dense layer (20 neurons)
Dropout (rate 0.3)
Dense layer (10 neurons)
Dropout (rate 0.3)
Output layer (1 value)

Model

Model version: