Emmanuel Angarita / RockPaperScissors_Demo Public

Training settings

Please provide a valid number of training cycles (numeric only)
Please provide a valid number for the learning rate (between 0 and 1)
Please provide a valid training processor option

Augmentation settings

Advanced training settings

Neural network architecture

import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, InputLayer, Dropout, Conv1D, Conv2D, Flatten, Reshape, MaxPooling1D, MaxPooling2D, AveragePooling2D, BatchNormalization, Permute, ReLU, Softmax, Activation from tensorflow.keras.optimizers.legacy import Adam EPOCHS = args.epochs or 50 LEARNING_RATE = args.learning_rate or 0.0005 # If True, non-deterministic functions (e.g. shuffling batches) are not used. # This is False by default. ENSURE_DETERMINISM = args.ensure_determinism # this controls the batch size, or you can manipulate the tf.data.Dataset objects yourself BATCH_SIZE = args.batch_size or 32 if not ENSURE_DETERMINISM: train_dataset = train_dataset.shuffle(buffer_size=BATCH_SIZE*4) train_dataset=train_dataset.batch(BATCH_SIZE, drop_remainder=False) validation_dataset = validation_dataset.batch(BATCH_SIZE, drop_remainder=False) # model architecture model = Sequential() model.add(Dense(3375, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(3000, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(2625, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(2250, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(1875, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(1500, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(1125, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(750, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(375, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(250, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(100, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(50, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(20, activation='relu', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(classes, name='y_pred', activation='softmax')) # this controls the learning rate opt = Adam(learning_rate=LEARNING_RATE, beta_1=0.9, beta_2=0.999) callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count, epochs=EPOCHS, ensure_determinism=ENSURE_DETERMINISM)) # train the neural network model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) model.fit(train_dataset, epochs=EPOCHS, validation_data=validation_dataset, verbose=2, callbacks=callbacks) # Use this flag to disable per-channel quantization for a model. # This can reduce RAM usage for convolutional models, but may have # an impact on accuracy. disable_per_channel_quantization = False
Input layer (3,750 features)
Dense layer (3375 neurons)
Dense layer (3000 neurons)
Dense layer (2625 neurons)
Dense layer (2250 neurons)
Dense layer (1875 neurons)
Dense layer (1500 neurons)
Dense layer (1125 neurons)
Dense layer (750 neurons)
Dense layer (375 neurons)
Dense layer (250 neurons)
Dense layer (100 neurons)
Dense layer (50 neurons)
Dense layer (20 neurons)
Output layer (3 classes)

Model

Model version: