Edge Impulse Inc. / Visual Regression - Blog Post Public
Primary version

Training settings

Please provide a valid number of training cycles (numeric only)
Please provide a valid number for the learning rate (between 0 and 1)

Advanced training settings

Neural network architecture

import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, InputLayer, Dropout, Conv1D, Conv2D, Flatten, Reshape, MaxPooling1D, MaxPooling2D, AveragePooling2D, BatchNormalization, TimeDistributed, Permute, ReLU, Softmax from tensorflow.keras.optimizers import Adam EPOCHS = args.epochs or 5000 LEARNING_RATE = args.learning_rate or 0.0003 # this controls the batch size, or you can manipulate the tf.data.Dataset objects yourself BATCH_SIZE = 32 train_dataset = train_dataset.batch(BATCH_SIZE, drop_remainder=False) validation_dataset = validation_dataset.batch(BATCH_SIZE, drop_remainder=False) # model architecture model = Sequential() model.add(Conv2D(32, kernel_size=3, kernel_constraint=tf.keras.constraints.MaxNorm(1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2, strides=2, padding='same')) model.add(Conv2D(16, kernel_size=3, kernel_constraint=tf.keras.constraints.MaxNorm(1), padding='same', activation='relu')) model.add(MaxPooling2D(pool_size=2, strides=2, padding='same')) model.add(Flatten()) model.add(Dropout(0.25)) model.add(Dense(classes, name='y_pred')) # this controls the learning rate opt = Adam(learning_rate=LEARNING_RATE, beta_1=0.9, beta_2=0.999) callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count, epochs=EPOCHS)) # train the neural network model.compile(loss='mean_squared_error', optimizer=opt, metrics=None) model.fit(train_dataset, epochs=EPOCHS, validation_data=validation_dataset, verbose=2, callbacks=callbacks) # Use this flag to disable per-channel quantization for a model. # This can reduce RAM usage for convolutional models, but may have # an impact on accuracy. disable_per_channel_quantization = False
Input layer (76,800 features)
2D conv / pool layer (32 filters, 3 kernel size, 1 layer)
2D conv / pool layer (16 filters, 3 kernel size, 1 layer)
Flatten layer
Dropout (rate 0.25)
Output layer (1 classes)