Edge Impulse Inc. / Sensorless Drive Diagnosis Feature Classifier Public
OmarTests
Primary version

Training settings

Please provide a valid number of training cycles (numeric only)
Please provide a valid number for the learning rate (between 0 and 1)

Advanced training settings

Neural network architecture

import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, InputLayer, Dropout, Conv1D, Conv2D, Flatten, Reshape, MaxPooling1D, MaxPooling2D, BatchNormalization, TimeDistributed from tensorflow.keras.optimizers import Adam # model architecture model = Sequential() model.add(Dense(90, activation='tanh', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dropout(0.25)) model.add(Dense(120, activation='tanh', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dropout(0.25)) model.add(Dense(90, activation='tanh', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dropout(0.25)) model.add(Dense(12, activation='tanh', activity_regularizer=tf.keras.regularizers.l1(0.00001))) model.add(Dense(classes, activation='softmax', name='y_pred')) # this controls the learning rate opt = Adam(lr=0.0005, beta_1=0.9, beta_2=0.999) # this controls the batch size, or you can manipulate the tf.data.Dataset objects yourself BATCH_SIZE = 32 train_dataset = train_dataset.batch(BATCH_SIZE, drop_remainder=False) validation_dataset = validation_dataset.batch(BATCH_SIZE, drop_remainder=False) callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count)) callbacks = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=30) # train the neural network model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy']) model.fit(train_dataset, epochs=600, validation_data=validation_dataset, verbose=2, callbacks=callbacks)
Input layer (48 features)
Dense layer (90 neurons)
Dense layer (120 neurons)
Dense layer (90 neurons)
Dense layer (12 neurons)
Output layer (11 classes)