Edge Impulse Inc. / Sensorless Drive Diagnosis Feature Classifier Public

Training settings

Please provide a valid number of training cycles (numeric only)
Please provide a valid number for the learning rate (between 0 and 1)
Please provide a valid training processor option

Augmentation settings

Advanced training settings

Neural network architecture

import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, InputLayer, Dropout, Conv1D, Conv2D, Flatten, Reshape, MaxPooling1D, MaxPooling2D, BatchNormalization, TimeDistributed from tensorflow.keras.optimizers import Adam # model architecture implementing an SVC # # Requirements for an SVC in keras: # - dense layer with neurons == number of output classes # - linear activation and l2 regularization # - hinge loss function model = Sequential() model.add(Dense(classes, activation='linear', activity_regularizer=tf.keras.regularizers.l2(0.0001))) # configure the optimizer with learning rate and other hyperparams: opt = Adam(lr=0.0005, beta_1=0.9, beta_2=0.999) BATCH_SIZE = 32 train_dataset = train_dataset.batch(BATCH_SIZE, drop_remainder=False) validation_dataset = validation_dataset.batch(BATCH_SIZE, drop_remainder=False) callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count)) # train the neural network model.compile(loss='squared_hinge', optimizer=opt, metrics=['accuracy']) model.fit(train_dataset, epochs=60, validation_data=validation_dataset, verbose=2, callbacks=callbacks)
Input layer (48 features)
Dense layer (96 neurons)
Dense layer (48 neurons)
Dense layer (24 neurons)
Dense layer (12 neurons)
Output layer (11 classes)

Model

Model version: