This lists all test data.
You can manage this data through Data acquisition.
Set the 'expected outcome' for each sample to the desired outcome to automatically score the impulse.
Apply filters
Sample name | Expected outcome | F1 score | Result | |
---|---|---|---|---|
val1 (7) | human | 100% | ||
val1 (10) | human | 100% | ||
val1 (2) | human, human | 100% | ||
value (12) | human | 100% | ||
value (13) | human | 100% | ||
value (15) | human | 66% | ||
filimage (4) | - | 100% | ||
poster1_22 | - | 100% | ||
vrunda (18) | human | 100% | ||
data1 (3) | human | 66% | ||
run7 (7) | human | 100% | ||
image2_10 | human | 100% | ||
data1 (5) | human | 100% | ||
data1 (8) | human | 100% | ||
vrunda (18) | human | 100% | ||
vrunda (8) | human | 100% | ||
image_8 | human | 100% | ||
vrunda (19) | human | 100% | ||
seated (30) | human | 100% | ||
image6_17 | human | 100% | ||
seated (9) | human | 50% | ||
seated (10) | human | 50% | ||
seated (13) | human | 100% | ||
filimage (134) | human | 100% | ||
filimage (56) | human | 100% | ||
filimage (30) | human | 66% | ||
image4_29 | human | 100% | ||
new1_2 | human, human | 100% | ||
data_3 | - | 0% | ||
data1_1 | human, human | 66% | ||
data1 (26) | human, human | 80% | ||
image2_12 | human | 100% | ||
image2_17 | human | 100% | ||
image1_5 | human | 100% | ||
image2_5 | human | 100% | ||
new1_15 | - | 0% | ||
image_19 | human | 80% | ||
image_11 | human | 100% | ||
seated_image (15) | human | 100% | ||
image_5 | human | 100% | ||
vrunda (28) | human | 100% | ||
new1_36 | human | 66% | ||
new1_26 | human | 100% | ||
new1_19 | human | 100% | ||
jay (3) | human | 100% | ||
jay (1) | human | 100% | ||
data_11 | - | 0% | ||
background (1) | - | 100% | ||
background (22) | - | 100% | ||
data1 (16) | human | 100% | ||
background (9) | human | 100% | ||
vrunda (28) | human | 100% | ||
vrunda (2) | human | 100% | ||
new1_27 | human | 100% | ||
new1_2 | human | 66% | ||
background (3) | - | 100% | ||
background (9) | human | 100% | ||
data1 (16) | human | 100% | ||
background (20) | - | 0% | ||
data1 (17) | human | 100% | ||
image6_15 | human | 100% | ||
image6_7 | human | 100% | ||
image6_13 | human | 100% | ||
image4_29 | human | 100% | ||
image2_30 | human | 100% | ||
image1_19 | human | 100% | ||
image_2_47 | human | 100% | ||
image1_9 | human | 100% | ||
new1_9 | - | 100% | ||
new1_8 | - | 100% | ||
new_1 | - | 0% | ||
data_12 | - | 100% | ||
img (20) | - | 100% | ||
image_30 | human | 100% | ||
data_10 | - | 0% | ||
data_3 | - | 0% | ||
frame3 (12) | human | 100% | ||
frame4 (23) | human, human | 100% | ||
frame4 (18) | human | 100% | ||
frame4 (14) | human | 100% | ||
frame4 (4) | human | 100% | ||
frame2 (24) | - | 100% | ||
frame2 (20) | human | 100% | ||
frame2 (13) | human | 100% | ||
frame2 (5) | - | 100% | ||
frame (16) | - | 0% | ||
image8_3 | - | 100% | ||
image_7 | human | 100% | ||
image_12 | - | 100% | ||
image_11 | human | 66% | ||
image6_12 | human | 100% | ||
image6_14 | human | 100% | ||
image6_22 | human | 100% | ||
image6_20 | human | 100% | ||
data (94) | human, human | 100% | ||
data (91) | human, human | 100% | ||
data (84) | human | 100% | ||
data (8) | human | 100% | ||
data (72) | human | 100% | ||
data (70) | human | 100% | ||
data (55) | human, human | 100% | ||
data (48) | human, human | 100% | ||
data (40) | human, human | 100% | ||
data (34) | human | 100% | ||
data (27) | human, human | 100% | ||
data (24) | human, human | 100% | ||
data (20) | human, human | 100% | ||
data (160) | human | 100% | ||
data (154) | human | 100% | ||
data (134) | human | 100% | ||
data (13) | human, human | 100% | ||
data (125) | human | 100% | ||
data (119) | human | 100% | ||
data (108) | human, human | 100% | ||
data (101) | human, human | 80% | ||
data (10) | human | 100% | ||
image_1701 (96) | human, human | 100% | ||
image_1701 (94) | human, human | 100% | ||
image_1701 (89) | human, human | 100% | ||
image_1701 (87) | human, human | 100% | ||
image_1701 (76) | human, human | 100% | ||
image_1701 (78) | human, human | 100% | ||
image_1701 (70) | human | 66% | ||
image_1701 (62) | human | 66% | ||
image_1701 (60) | human | 100% | ||
image_1701 (48) | human, human, human | 100% | ||
image_1701 (43) | human, human | 100% | ||
image_1701 (26) | human | 66% | ||
image_1701 (27) | human | 66% | ||
image_1701 (35) | human, human | 66% | ||
image_1701 (30) | human | 100% | ||
image_1701 (24) | human | 100% | ||
image_1701 (176) | human, human | 100% | ||
image_1701 (168) | human, human | 100% | ||
image_1701 (173) | human | 100% | ||
image_1701 (164) | human | 100% | ||
image_1701 (153) | human | 100% | ||
image_1701 (145) | human | 100% | ||
image_1701 (139) | human | 100% | ||
image_1701 (130) | human | 100% | ||
image_1701 (131) | human | 100% | ||
image_1701 (123) | human, human | 100% | ||
image_1701 (12) | human, human | 100% | ||
image_1701 (117) | human | 66% | ||
image_1701 (103) | human, human | 100% | ||
image_1701 (107) | human | 100% | ||
image_1701 (111) | human | 100% | ||
image_1701 (104) | human | 100% |
Filter yielded no results, click to adjust the filter