Edge Impulse Inc. / Visual GMM cracks
Dataset acquired from https://digitalcommons.usu.edu/all_datasets/48/
About this project
Visual Anomaly Detection (FOMO-AD)
Read more about FOMO-AD here: https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/visual-anomaly-detection
Dataset: https://digitalcommons.usu.edu/all_datasets/48/
Maguire, M., Dorafshan, S., & Thomas, R. J. (2018). SDNET2018: A concrete crack image dataset for machine learning applications. Utah State University. https://doi.org/10.15142/T3TD19
Download block output
Title | Type | Size | |
---|---|---|---|
Image training data | NPY file | 1040 windows | |
Image training labels | NPY file | 1040 windows | |
Image testing data | NPY file | 268 windows | |
Image testing labels | NPY file | 268 windows | |
Visual anomaly detection model | TensorFlow Lite (float32) | 68 KB | |
Visual anomaly detection model | TensorFlow Lite (int8 quantized) | 49 KB | |
Visual anomaly detection model | TensorFlow Lite (float32) - Model head | 19 KB | |
Visual anomaly detection model | Model evaluation metrics (JSON file) | - |
Clone project
You are viewing a public Edge Impulse project. Clone this project to add data or make changes.
Summary
Data collected
1,308 itemsProject info
Project ID | 288658 |
License | Apache 2.0 |