Training settings
Please provide a valid training processor option
Neural network architecture
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, InputLayer, Dropout, Conv1D, Conv2D, Flatten, Reshape, MaxPooling1D, MaxPooling2D, BatchNormalization
from tensorflow.keras.optimizers import Adam
# model architecture
model = Sequential()
model.add(Reshape((int(input_length / 1), 1), input_shape=(input_length, )))
model.add(Conv1D(16, kernel_size=4, activation='relu', padding='same'))
model.add(MaxPooling1D(pool_size=4, strides=1, padding='same'))
model.add(Dropout(0.1))
model.add(Conv1D(32, kernel_size=4, activation='relu', padding='same'))
model.add(MaxPooling1D(pool_size=4, strides=1, padding='same'))
model.add(Dropout(0.1))
model.add(Flatten())
model.add(Dense(classes, activation='softmax', name='y_pred'))
# this controls the learning rate
opt = Adam(lr=0.0005, beta_1=0.9, beta_2=0.999)
# this controls the batch size, or you can manipulate the tf.data.Dataset objects yourself
BATCH_SIZE = 32
train_dataset, validation_dataset = set_batch_size(BATCH_SIZE, train_dataset, validation_dataset)
callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count))
# train the neural network
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
model.fit(train_dataset, epochs=500, validation_data=validation_dataset, verbose=2, callbacks=callbacks)
Input layer (31 features)
Reshape layer (1 columns)
1D conv / pool layer (32 neurons, 16 kernel size, 1 layer)
Dropout (rate 0.1)
1D conv / pool layer (16 neurons, 4 kernel size, 1 layer)
Dropout (rate 0.1)
Flatten layer
Output layer (3 classes)
Model
Model version: