Deploy to any Linux-based development board
Edge Impulse for Linux lets you run your models on any Linux-based development board,
with SDKs for Node.js, Python, Go and C++ to integrate your models quickly into
your application.
- Install the Edge Impulse Linux CLI
- Run
edge-impulse-linux-runner
(run with --clean
to switch projects)
Run your model as a Docker container
To run your model as a container with an HTTP interface, use:
Container:
public.ecr.aws/g7a8t7v6/inference-container:563d06e8a89d7392300aa1ddc34d08390967a820
Arguments:
--api-key ei_5432f5cf9d1591ea3241793bbcf422cbc60bf61c58a9446fe592e1131326dadd --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container:563d06e8a89d7392300aa1ddc34d08390967a820 \
--api-key ei_5432f5cf9d1591ea3241793bbcf422cbc60bf61c58a9446fe592e1131326dadd \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson's GPUs (JetPack 4.6.x), use:
Container:
public.ecr.aws/g7a8t7v6/inference-container-jetson:5ff4edf4ef063b81178174307740134632a170d8
Arguments:
--api-key ei_5432f5cf9d1591ea3241793bbcf422cbc60bf61c58a9446fe592e1131326dadd --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container-jetson:5ff4edf4ef063b81178174307740134632a170d8 \
--api-key ei_5432f5cf9d1591ea3241793bbcf422cbc60bf61c58a9446fe592e1131326dadd \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson Orin's GPUs (JetPack 5.1.x), use:
Container:
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin:8281a03680a72002250fd65c8ebd16cf79ff6107
Arguments:
--api-key ei_5432f5cf9d1591ea3241793bbcf422cbc60bf61c58a9446fe592e1131326dadd --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin:8281a03680a72002250fd65c8ebd16cf79ff6107 \
--api-key ei_5432f5cf9d1591ea3241793bbcf422cbc60bf61c58a9446fe592e1131326dadd \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson Orin's GPUs (JetPack 6.0), use:
Container:
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin-6-0:c6f942769de5d3a0813420ec68cd50cae15052fa
Arguments:
--api-key ei_5432f5cf9d1591ea3241793bbcf422cbc60bf61c58a9446fe592e1131326dadd --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/g7a8t7v6/inference-container-jetson-orin-6-0:c6f942769de5d3a0813420ec68cd50cae15052fa \
--api-key ei_5432f5cf9d1591ea3241793bbcf422cbc60bf61c58a9446fe592e1131326dadd \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.