Training settings
Please provide a valid training processor option
Neural network architecture
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, InputLayer, Dropout, Conv1D, Conv2D, Flatten, Reshape, MaxPooling1D, MaxPooling2D, AveragePooling2D, BatchNormalization, Permute, ReLU, Softmax
from tensorflow.keras.optimizers.legacy import Adam
EPOCHS = args.epochs or 200
LEARNING_RATE = args.learning_rate or 0.0005
# If True, non-deterministic functions (e.g. shuffling batches) are not used.
# This is False by default.
ENSURE_DETERMINISM = args.ensure_determinism
# this controls the batch size, or you can manipulate the tf.data.Dataset objects yourself
BATCH_SIZE = args.batch_size or 32
if not ENSURE_DETERMINISM:
train_dataset = train_dataset.shuffle(buffer_size=BATCH_SIZE*4)
train_dataset=train_dataset.batch(BATCH_SIZE, drop_remainder=False)
validation_dataset = validation_dataset.batch(BATCH_SIZE, drop_remainder=False)
# model architecture
model = Sequential()
# For optimal compatibility, Dense layers are sometimes expressed as
# mathematically equivalent convolutional layers.
model.add(Conv2D(64, 1, activation='relu',
activity_regularizer=tf.keras.regularizers.l1(0.00001)))
# For optimal compatibility, Dense layers are sometimes expressed as
# mathematically equivalent convolutional layers.
model.add(Conv2D(32, 1, activation='relu',
activity_regularizer=tf.keras.regularizers.l1(0.00001)))
# For optimal compatibility, Dense layers are sometimes expressed as
# mathematically equivalent convolutional layers.
model.add(Conv2D(16, 1, activation='relu',
activity_regularizer=tf.keras.regularizers.l1(0.00001)))
model.add(Flatten())
model.add(Dropout(0.25))
model.add(Dense(classes, name='y_pred', activation='softmax'))
# this controls the learning rate
opt = Adam(learning_rate=LEARNING_RATE, beta_1=0.9, beta_2=0.999)
callbacks.append(BatchLoggerCallback(BATCH_SIZE, train_sample_count, epochs=EPOCHS, ensure_determinism=ENSURE_DETERMINISM))
# train the neural network
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
model.fit(train_dataset, epochs=EPOCHS, validation_data=validation_dataset, verbose=2, callbacks=callbacks, class_weight=ei_tensorflow.training.get_class_weights(Y_train))
# Use this flag to disable per-channel quantization for a model.
# This can reduce RAM usage for convolutional models, but may have
# an impact on accuracy.
disable_per_channel_quantization = True
Input layer (1,125 features)
Dense layer (64 neurons)
Dense layer (32 neurons)
Dense layer (16 neurons)
Flatten layer
Dropout (rate 0.25)
Output layer (10 classes)
Model
Model version: