Brainchip / Simple Akida Test Public

Simple Akida Test

Detect ball bearing faults using a subset of the Dataset for Sensorless Drive Diagnosis.

Audio

About this project

This project uses a subset of the Dataset for Sensorless Drive Diagnosis to train a compact classifier that identifies a ball bearing fault in a two-phase AC motor.

The raw data from the dataset is input current into the motor. This data is downsampled to 10kHz before training.

For more detail on the dataset, see the UCI Machine Learning Repository page or the paper below:

PASCHKE, Fabian ; BAYER, Christian ; BATOR, Martyna ; MÖNKS, Uwe ; DICKS, Alexander ; ENGE-ROSENBLATT, Olaf ; LOHWEG, Volker: Sensorlose Zustandsüberwachung an Synchronmotoren, Bd. 46. In: HOFFMANN, Frank; HÜLLERMEIER, Eyke (Hrsg.): Proceedings 23. Workshop Computational Intelligence. Karlsruhe : KIT Scientific Publishing, 2013 (Schriftenreihe des Instituts für Angewandte Informatik - Automatisierungstechnik am Karlsruher Institut für Technologie, 46), S. 211-225

class1.Parameterset8.training_1.json.2g1cfrn5
class2.Parameterset8.training_1.json.2g1cj68n
class1.Parameterset3.training_0.json.2g1cfvp1
class2.Parameterset5.training_1.json.2g1cj5t6
class1.Parameterset5.training_0.json.2g1cfui5
class2.Parameterset4.training_0.json.2g1cj40a
class2.Parameterset2.training_1.json.2g1cj412
class2.Parameterset5.training_0.json.2g1cj4j1

Run this model

On any device

Dataset summary

Data collected
2m 39s
Sensor
audio @ 10KHz
Labels
ball-bearing-fault, normal

Project info

Project ID 114197
Project version 1
License No license attached
No. of views 9,760
No. of clones 7