Deploy to any Linux-based development board
Edge Impulse for Linux lets you run your models on any Linux-based development board,
with SDKs for Node.js, Python, Go and C++ to integrate your models quickly into
your application.
- Install the Edge Impulse Linux CLI
- Run
edge-impulse-linux-runner
(run with --clean
to switch projects)
Run your model as a Docker container
To run your model as a container with an HTTP interface, use:
Container:
public.ecr.aws/z9b3d4t5/inference-container:ede3d1841fee930674d1b13597542067f47f3e9c
Arguments:
--api-key ei_e09d2eff35fc2c7f02fe6030302496713f364991eff67e728f0880a7e1bc4ad1 --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it \
-p 1337:1337 \
public.ecr.aws/z9b3d4t5/inference-container:ede3d1841fee930674d1b13597542067f47f3e9c \
--api-key ei_e09d2eff35fc2c7f02fe6030302496713f364991eff67e728f0880a7e1bc4ad1 \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson's GPUs (JetPack 4.6.x), use:
Container:
public.ecr.aws/z9b3d4t5/inference-container-jetson:4b514519d663112a80fc6fcd6141878b5c7062a5
Arguments:
--api-key ei_e09d2eff35fc2c7f02fe6030302496713f364991eff67e728f0880a7e1bc4ad1 --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/z9b3d4t5/inference-container-jetson:4b514519d663112a80fc6fcd6141878b5c7062a5 \
--api-key ei_e09d2eff35fc2c7f02fe6030302496713f364991eff67e728f0880a7e1bc4ad1 \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson Orin's GPUs (JetPack 5.1.x), use:
Container:
public.ecr.aws/z9b3d4t5/inference-container-jetson-orin:eb37c67d053716ae154bf320c9ed9953ac5cffbe
Arguments:
--api-key ei_e09d2eff35fc2c7f02fe6030302496713f364991eff67e728f0880a7e1bc4ad1 --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/z9b3d4t5/inference-container-jetson-orin:eb37c67d053716ae154bf320c9ed9953ac5cffbe \
--api-key ei_e09d2eff35fc2c7f02fe6030302496713f364991eff67e728f0880a7e1bc4ad1 \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on NVIDIA Jetson Orin's GPUs (JetPack 6.0), use:
Container:
public.ecr.aws/z9b3d4t5/inference-container-jetson-orin-6-0:861f6d4a43191fe1d0caa3ac4095a3e32a14b854
Arguments:
--api-key ei_e09d2eff35fc2c7f02fe6030302496713f364991eff67e728f0880a7e1bc4ad1 --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it --runtime=nvidia --gpus all \
-p 1337:1337 \
public.ecr.aws/z9b3d4t5/inference-container-jetson-orin-6-0:861f6d4a43191fe1d0caa3ac4095a3e32a14b854 \
--api-key ei_e09d2eff35fc2c7f02fe6030302496713f364991eff67e728f0880a7e1bc4ad1 \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.
Run your model as a Docker container
To run your model as a container with an HTTP interface on Qualcomm Adreno 702 GPUs, use:
Container:
public.ecr.aws/z9b3d4t5/inference-container-qc-adreno-702:d55e31f3d3c4bcc7ac22910faacc08bbb3d76069
Arguments:
--api-key ei_e09d2eff35fc2c7f02fe6030302496713f364991eff67e728f0880a7e1bc4ad1 --run-http-server 1337
For example, in a one-liner locally:
docker run --rm -it --device /dev/dri \
-p 1337:1337 \
public.ecr.aws/z9b3d4t5/inference-container-qc-adreno-702:d55e31f3d3c4bcc7ac22910faacc08bbb3d76069 \
--api-key ei_e09d2eff35fc2c7f02fe6030302496713f364991eff67e728f0880a7e1bc4ad1 \
--run-http-server 1337
This automatically builds and downloads the latest model (incl. hardware optimizations), and runs an HTTP endpoint at
http://localhost:1337 with instructions.
Read the docs for information,
like bundling in your model inside the container and selecting extra hardware optimizations.